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Abstract

Using a global poverty map and standard soil productivity measures, we find that the poorest
districts in Africa are more likely to have better (not worse) soil quality and that land fertility is
higher in districts with worse roads. Our results are robust to a battery of controls and alterna-
tive measures of poverty and soil quality. The results indicate that transportation costs are the
main drivers of poverty in Africa and that isolation might turn soil quality into a curse. More
specifically, in districts with poor infrastructure, the poverty rate increases as soil quality gets
better. We find that these results could be attributed to relatively low human capital investment
in isolated districts with abundant agricultural resources. We provide evidence for causality
by using colonial road networks as an instrument for current transportation costs.
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1 INTRODUCTION

Soil quality and land fertility are key determinants of agricultural production and economic growth.

As a result, soil degradation and drought are widely perceived to be associated with food inse-

curity and rural poverty (Barbier 2010; Nkonya et al. 2011). It is therefore not surprising that

policy-makers and academics have recently focused on the adoption of modern inputs, including

fertilizer use and improved seeds as a possible solution for rural poverty (Demery and Christi-

aensen 2007; World Bank 2008; Morris et al. 2007; Dercon and Christiansen 2011). For instance,

Sanchez (2002) cites soil quality as a key driver of low agricultural production, while Scherr (1999)

and Woomer et al. (1994) emphasize the role of soil degradation as a major concern for food secu-

rity in Africa (See also Nkonya et al. 2011). In other words, the conventional wisdom is that soil

quality is negatively correlated with rural poverty and that improving land fertility is crucial to

poverty alleviation. We find the opposite to be true.

Using data on soil quality, poverty, transportation costs, and other potential determinants of

poverty covering more than five thousand subnational units from forty-six sub-Saharan African

countries we establish four important sets of empirical regularities. First of all, there exists a

positive correlation between soil quality and poverty in Africa, meaning that regions where land

is most fertile are on average more likely to be impoverished than regions where soil is poorer.

In addition, transportation costs and isolation are the main drivers of rural poverty. Furthermore,

there exists a mismatch between soil quality and infrastructure. Roads tend to be bad in areas

with good soil, such as in hills and valleys, and good where the soil is of worse quality, such as

in flat terrain close to the coast. Finally, when infrastructure is poorly maintained or non-existent,

households are poorer in areas where the soil is quite fertile than in areas where the land is barren.

We also argue that these results may be attributed in part to insufficient human capital investment.

In the absence of proper roads and transportation, residents may see little point in investing in

education and other human capital drivers given their isolation and their abundant agricultural

resources. Conversely, in soil-poor districts with bad roads, households have lower opportunity

costs of education than those living in soil-rich districts with bad roads.

Several papers have already pointed to a weak association between soil quality and income

(Drechsel et al. 2001, Ehui and Pender 2005, Okwi et al 2007). In particular, Okwi et al. (2007)
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use data from Kenya and show that if all soil were at the highest quality, it would only lead to a 1

percentage point decrease in poverty. While soil quality is found in some studies to have a limited

effect on income, the literature finds a strong association between rural roads and poverty (Jacoby,

2000; Gibson and Rozelle 2003; Mu and van de Walle 2007; Jacoby and Minten, 2009; Khandker

et al., 2009). From the theoretical point of view, Gollin and Rogerson (2014) propose a model that

links transportation costs and the fraction of the rural workforce engaged in subsistence agricul-

ture. Calibrating the model to match the features of sub-Saharan African countries, they make

predictions about the role of transportation productivity in economic development and in the

allocation of resources between manufacturing, subsistence agriculture and modern agriculture.

In particular, they find that there are large interaction effects between agricultural productivity

and improvements in transportation. Stifel and Minten (2008) find a strong relationship between

poverty and isolation in Madagascar, highlighting four mechanisms at work: transportation costs,

plot size and productivity, price variability and extensification onto less fertile lands, and insecu-

rity. In other words, rural households choose to use larger plots with significantly fewer inputs,

and invest in crops for their own consumption rather than for income because they are not sure

they will be able to sell surplus crops to the market. Diversification of crops into more types and

across more land also acts as insurance against price variability in cash crops, which is stronger in

rural areas, as families do not need to purchase food. Meanwhile, extensification provides insur-

ance for insecurity. Minten et al. (2013) also find that transaction and transportation costs together

add about 50 percent for the most remote farmer to the fertilizer prices charged at the input dis-

tribution center in their case study of the inpout distribution system in Northwestern Ethiopia.

However, as Stifel and Minten acknowledge, endogeneity of isolation may be a serious issue in

their study, with superior land quality being associated with less isolation. We build upon these

results by studying the relationship between isolation and soil quality as determinants of poverty.

The literature also highlights mechanisms through which rural roads decrease poverty and

increase food security. Ali (2010) finds that households in Bangladesh invest in better technology

once a road is built, replacing traditional local rice with a high-yield variety that requires more

inputs. Households that only grow traditional rice increase their acreage instead. Additionally,

the treatment effect is stronger for wealthier households, presumably better able to bear the costs

of the inputs associated with the high-yield rice. The paper shows that the result only applies to
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households close to the road, with distant households not changing their practices. Additionally,

the preference for high-yield rice did not appear to change over time significantly outside of the

treatment population, with the price for the seed remaining stable across the time period studied.

This result is consistent with the general notion that rural households use more inputs once roads

are built. Bell and Dillen (2012) find that the introduction of rural roads in India leads households

to invest more in education and health, with fewer days of school missed and much higher use of

medical services. Yamano and Kijima (2010) find that soil quality is correlated with farm income

only after controlling for isolation. They also find that both isolation and soil quality are associ-

ated with crop choice. The result suggests that isolated communities with poor soil quality may

have stronger incentives to use non-farm income to supplement their agricultural output, while

isolated agricultural households with higher quality soil are less likely to use non-farm income for

consumption.

Some of the more recent research highlights informational frictions and market aspects of agri-

culture in isolated areas. In a study of India, internet kiosks displaying current prices have been

shown to raise prices in the regulated markets, and decrease price dispersion (Goyal, 2010). Addi-

tionally, the internet kiosks are associated with 19% higher production without increasing acreage,

signaling either more intensive use of inputs and/or substitution to more profitable crops. A sec-

ond study applies such logic to a case study of Sierra Leone (Casaburi et al., 2010). Applying

a regression discontinuity design to a program where roads were built based on scores (based

on population and economic value per kilometer, length and other considerations), the authors

find heterogeneity in the treatment effect of roads on net returns for agriculture. In other words,

the price impact of road construction depends upon other factors, specifically productivity and

linkages with urban consumers, with higher prices observed in productive areas and vice-versa.

Our paper builds upon the notion of heterogeneity in the impact of roads, noting that roads

have a much more positive benefit in areas with high soil quality, which is in line with the result

that more productive areas receive higher prices, and, thereby, higher net returns due to roads.

On the methodological front, two recent papers, both studying China, have advanced a new

identification strategy to tackle the issue of endogeneity of infrastructure. Banerjee et al. (2012) use

colonial-era railroads as an instrument for current transportation networks to show that proxim-

ity to transportation infrastructure promotes long-term growth, while Faber (2012) treats a large
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infrastructure-building project as a natural experiment. We build on this type of intuition, and

exploit variation in infrastructure induced by decisions made during the colonial period to assess

the role that transportation plays in determining rural poverty in contemporary Africa.

Our paper makes several important contributions to the literature. Foremost, in contrast to the

conventional wisdom, we find a negative correlation between soil quality and poverty. This im-

plies that poverty cannot be explained simply by invoking land degradation. In fact, as a stylized

fact, a majority of poor households in Africa dwell on relatively high-quality soil.

Further, we find that the interaction between infrastructure and soil quality is positive and

statistically significant. This can be interpreted in different ways: (1) soil quality matters most

when there is good transportation infrastructure, (2) infrastructure is the most useful when soil

is of good quality. But it might also point to the existence of a “curse of good soil.” We estimate

flexible models to assess whether good soil without infrastructure may lead to worse economic

outcomes. The data show that among bad-infrastructure districts the expected poverty rate is

higher when soil quality is better.

We provide some additional evidence about the correlates both of infrastructure and soil qual-

ity. We find an element of “bad luck” in how infrastructure and soil are matched. In particular, the

best soil is in districts with medium-high level slopes (e.g., hilly terrain) and, all else equal, at an

altitude of 200 meters, while the best infrastructure is found in flatter lands and low altitude. We

also find that districts containing rivers and those close to the 1900 colonial borders have better

land quality and worse infrastructure.

We adopt several strategies to deal with plausible endogeneity of infrastructure provision.

First, we use the presence of roads in the colonial period as an instrument for current infrastruc-

ture provision or transportation costs. We show that the location of colonial infrastructure can

be predicted based on geographic characteristics and, importantly, by the presence of extractive

resources (mines and quarries) but not by soil quality. This is in line with conventional wisdom

in economic history: colonial powers were not after farmland but minerals. More specifically, we

find that the probability of having a colonial road is around 22 percentage points higher in mining

districts than in non-mining ones.1

1The results implicitly link food security to historical factors. Given that contemporary infrastructure availability
is associated quite closely to the road network in colonial times, decisions made by colonizers for other reasons affect
how land is used today, and therefore the current patterns of poverty.
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One possible concern might be that mining could have an independent effect on poverty; if

colonial roads also capture some of the direct effect of mining on poverty, then the exclusion re-

striction assumption might be violated. But conditional on mining, this assumption should hold.

We estimate a model in which we condition on mining and find that mining districts have some-

what lower poverty, but our basic results still hold: the interaction between soil and infrastructure,

instrumenting for current infrastructure with colonial roads, is still negatively correlated with

poverty. We perform various robustness and sensitivity checks to assess the extent to which our

results might be driven by violations of the exclusion restriction. Our main result for the interac-

tion between soil quality and infrastructure survives even if the exclusion restriction is assumed to

hold only conditionally, or to hold only approximately (so that the direct effect of the instruments

on the poverty rate is not zero).

Overall we find a negative association between soil quality and income in isolated areas. The

results are robust to the inclusion of measures of urbanization and the exclusion of urban districts.

In other words, our results are not simply an indication that rural areas are poorer than urban areas

due to agricultural productivity (see Lewis 1955, McMillan and Rodrik 2011). Instead, we relate

the income differentials across rural areas to market access and high transportation costs and the

dominance of subsistence agriculture, which is strongly associated with rural poverty. Our results

suggest that the most important factor driving rural poverty and food security is the provision of

rural infrastructure and access to markets. In other words, to understand the relationship between

factor endowment (e.g., soil) and rural development or rural poverty, it is crucial to take into ac-

count the complementarity between soil quality and infrastructure availability and market access.

If one were to overlook this interaction, one would underestimate the return to infrastructure in

poverty reduction. 2

Our result implies that the return to infrastructure depends on productive asset endowments:

in other words, infrastructure has a larger poverty-reduction effect when the productive potential

of the land is high. In addition, by estimating separate coefficients for all combinations of soil

quality and infrastructure provision, we show that districts with good soil and bad roads are

worse off than districts with lower-quality soil and equally bad roads.
2In fact, the estimated effect of infrastructure on poverty would be an average of the effect it has in places where

roads would not matter much (because of low soil quality) and roads matter a lot (because the soil quality is high and
the productive potential at high investment and high effort is large).
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We discuss potential mechanisms that account for this perverse effect of soil quality on rural

poverty. We use a case study of Kenya to explore the role of human capital as a possible mecha-

nism mediating the relationship between soil quality and isolation on one hand, and rural poverty

on the other. Investment in human capital might be low in isolated districts with good soil because

of higher opportunity cost of education and poor service delivery in these areas. As expected, soil

quality is associated with worse education outcomes, both at primary and secondary school levels.

2 DATA

Our dataset covers 5334 subnational units in 46 sub-Saharan African countries. The number of

districts per country varies from a minimum of two districts (Sao Tome and Principe) to over 550

(in Nigeria) and its median is 80. The dataset covers a wide array of phenomena, ranging from

poverty to infrastructure to soil quality to population density.

The backbone for constructing the data set is the GIS map of African sub-national entities at

level 3, published by the UN’s Food and Agriculture Organization (FAO). We overlay the shapefile

of the subnational districts to the geocoded sources of soil quality, poverty, as well as other relevant

variables and compute district-level summaries, that we treat as the value of that given variable

for the district. In other words, when the resolution of the original measure is higher than that of

the districts (so that one district encompasses many cells in the grid) we average the values of the

cells. This is the case for the vast majority of variables, and is always the case when the original

data are released as gridded datasets or shapefiles (e.g., of rivers). In the case of the few measures

that have lower resolution than the districts borders, we attribute to the district the value of the

larger unit in which it is contained (or the mean of the values of the larger units it spans, if the

district belongs to more than one larger unit).

2.1 MAIN VARIABLES

Soil quality For soil quality we rely on several measures, from different sources. First of all, we

collected the scores on seven dimensions, published by the International Institute for Applied Sys-

tems Analysis (IIASA) and part of the Harmonized World Soil Database (HWSD). These evaluate

soil quality according to the following criteria: nutrient availability; nutrient retention capacity;
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rooting conditions; oxygen availability to roots; excess salts; toxicity; and workability. The data

is released for small cells (30 arcseconds, or approximately less than one square kilometer at the

equator) and the values in each cell can range from 0 to 7, with higher values meaning worse soil

quality. For each subnational entity, we compute the average soil quality for each of the seven di-

mensions (as the simple average of the cells contained in the perimeter of the subnational entity).

We then perform principal components analysis on the data for the whole continent (the unit of

observation, here, is the subnational district). From this, we extract the first principal component.

This loads negatively on all the seven variables, hence it is an index of soil quality where higher

values indicate better quality.

We also use the index of soil production published by FAO. This index “considers the suitabil-

ity of the best adapted crop to each soil’s condition in an area and makes a weighted average for

all soils present in a pixel.” (FAO 2007) We calculate, for each subnational district, the average

of this index. Finally, we use the classification of problem land published by FAO. This classifies

each cell, at high resolution, in one of several categories. We calculate the proportion of cells in

the district that fall in a category characterized as “No problem soils > 30% of the mapping unit",

to construct the variable “goodsoil". For the robustness checks, we also create analogous variables

with proportions for cells classified as “steep” or “infertile” by the problem land data set.

Poverty For poverty, we rely mainly on the Global Poverty Map Derived From Satellite Data

published by the National Geophysical Data Center (NGDC). The map is released at the 30 arcsec-

onds resolution (again, approximately one square kilometer at the equator). This dataset matches

night lights visible from satellites with population density estimates from the LandScan dataset.

These are then benchmarked with available poverty data at the national and subnational levels.

See Elvidge et al. (2006) for a detailed description. This dataset has a very high resolution, which

allows us to calculate a distinct value of the poverty rate for each subnational district. This means

that we are able to perform all of our analysis at the subnational district level including coun-

try fixed effects. In this estimation approach, all the coefficients on the explanatory and control

variables are identified exclusively by within-country variation. The fixed effects account for all

the features of the country that do not vary across districts (e.g., political regime, legal provisions

regarding freedom of association, quality of governance at the national level, etc.) as well as the
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mean of all omitted variables that do vary across districts.

Alternative measures of poverty that are geo-coded and are based on direct evidence (survey

estimates, census data, etc.) are available. In particular, the Poverty Mapping Project: Global

Subnational Prevalence of Child Malnutrition published by the Center for International Earth Sci-

ence Information Network (CIESIN), Columbia University, provides geocoded poverty estimates

based on “hard” data. It reports the percentage of children with weight-for-age z-scores that are

more than two standard deviations below the median of the NCHS/CDC/WHO International

Reference Population and aims at providing “a global subnational map of the prevalence of un-

derweight children that can be used by a wide user community in interdisciplinary studies of

health, poverty and the environment.” The data refers, depending on the location, to the most

recent available year between 1990 and 2002.

In an analogous effort, HarvestChoice/International Food Policy Research Institute (IFPRI)

publishes a geocoded map, referring to the year 2005, of sub-national poverty headcount ratios,

derived from 23 nationally representative household surveys and population censuses. Poverty is

defined at the $2/day level, expressed in 2005 international equivalent purchasing power parity

(PPP) dollars. Rates are in percentages of total population.

The resolution of these alternative measures is, unsurprisingly, much coarser than the satellite-

imaging data. This makes them unsuitable for district-level estimation with country fixed effects.3

In fact, the CIESIN and the IFPRI data provide few distinct values per country, and, especially in

smaller countries, this makes their use in our analysis problematic. First of all, the variation across

districts within country is smaller for these two measures than for the satellite data, as reflected

by coefficients of variation for the satellite data that are in the overwhelming majority of cases

quite higher. 4 In addition, the district-level values have within-country coefficient of variation

exactly equal to zero (implying that the index takes the same value in all districts) in a quarter of

the countries in the IFPRI data, and in two countries in the CIESIN data. See Appendix for full

reports. These countries would drop out of the analysis if a measure like this were used as the

dependent variable in country-fixed-effects estimation.
3CIESIN releases the data in raster format at the nominal resolution of a quarter degree; yet, the data just replicates

in the grid the few polygons per country available in the shapefile.
4The coefficient of variation discussed here is calculated by dividing the within-country standard deviation of the

poverty value by the country-wise mean.
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Yet, it is still worth comparing the main measure we use to these alternative estimates of

poverty, in order to validate the measure we chose as dependent variable in the analysis below.

Both alternative measures are positively correlated with the satellite data (with correlations re-

spectively .24 and .18) and linear regressions of the satellite values on the CIESIN and IFPRI data

yield (positive, and substantively large) coefficients, with t-values respectively 24 and 28.8. These

associations survive the inclusion of country fixed effects (so that variation across countries is not

accounted for when estimating the regression coefficient, but only variation within country). In

fixed effects models, in particular, the coefficient on the CIESIN measure is not statistically distin-

guishable from one. Given that both variables are measured as a percentage of total population

(and hence on the same scale) this establishes an almost-perfect coincidence between changes in

the expected value of the satellite measure and changes in the CIESIN measure.

Infrastructure For infrastructure, we rely on one main variable, road cost, published by FAO.

This measure is calculated as follows. First, the road network in Africa is classified according to

the accompanying road type classification system. Then, the cost to travel from one cell to the

next is estimated, assuming that “the time required to travel from one cell to another in absence

of main roads is 5 times longer than the time needed on the main road.” The information on the

road network was derived from ArcWorld (ESRI, 1992). In addition, we also employ the average

of the class of the roads found in the district. This is based on the Roads of Africa dataset (also

published by FAO).

2.2 CONTROL VARIABLES AND INSTRUMENTS

As for the control variables and the instruments, these can be divided into pure geographic/geological

variables, demographic variables, and historical variables.

Geographic variables The geographic controls are elevation and slope class of the terrain, dis-

tance from the coast, the presence of water bodies, the presence (and type) of rivers in the district,

the length of the growing period, rainfall, and classification into an agro-ecological zone.

Elevation data comes from the IIASA-LUC Global Terrain Slopes and Aspect Database, and is

originally reported at the 30 arcseconds resolution. We compute the average by district. Elevation
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is reported in meters, and we rescaled it in hundreds of meters. The slope data comes from the

FAO Geonetwork, originally from the FAO-UNESCO Soil Map of Africa: each cell is classified

in one of three classes, and we compute the median, the mean and the standard deviation of the

slope class within the district.

We compute the distance of the district from the closest coast, based on the data on coastlines

published by naturalearthdata.com. This takes the value of zero for a coastal district. For rivers,

we rely on the World Rivers GIS file (from http://worldmap.harvard.edu). We compute several

summaries: whether there is a river in the district; the distance of the district from the closest

river (equal to 0 if a river flows in the district); the average rank class of the rivers present in the

district; the rank class of the largest river in the district. We also calculate the proportion of cells

in the district classified as being water bodies. The data on water bodies also comes from the FAO

Geonetwork.

To build our instrument for soil quality, we overlay the map of subnational districts on the

Digital Soil Map of the World. This classifies the dominant soil for relatively fine-grained areas

(FAO, 1974). In general, a district belongs to more than one of the soil areas. We get the list of the

dominant soil in each of the geological areas that span the district, and we record all the classes of

the dominant soil present in a district. We then create a set of dummies, one for each major soil

grouping. We have a total of 22 dummies, for 22 soil groupings. The dummy for a given class of

soil takes the value of one in a given district if part of that district is spanned by a geological area

whose dominant soil belongs to that class.

Demographic variables We collect several demographic variables. First of all, we compute the

average and maximum level of urbanization in the district. The data on urbanization comes from

IIASA and is released at the 30 arcseconds resolution; for each cell, the percentage of urban pop-

ulation is reported. Similarly, we compute the percentage of cultivated land, also reported by

IIASA.

We also collect data on travel times to towns of at least 20,000 thousand inhabitants, and to

cities of more than half a million inhabitants. The data on which our measures are based are

published by HarvestChoice/IFPRI in raster format. We compute the average value of the cell-

level scores in the district.
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In addition, we also rely on the data on settlements published by CIESIN and now part of the

Global Rural-Urban Mapping Project (CIESIN, IFRPRI, and CIAT 2011). This dataset provides de-

tailed information about human settlements based on a variety of sources. For every settlement,

the location, and the population as of 1995 (among other pieces of information) is provided. We

restrict the analysis to settlements of at least 5000 inhabitants. We compute the number of settle-

ments with more than 5000 and 10,000 inhabitants (both in absolute terms and relative to the area

of the district) and the mean, the median, and the maximum size of the settlements in the district.

If a district has no recorded settlement with a population of at least 5000 as of 1995, all of these

take the value of zero.

We also compute the average of the rural population density figures published by FAO at

the resolution of 5 arc-minutes. Each pixel classified as “rural” by the urban area boundaries

map has information about the number of persons per square kilometer, aggregated from the 30

arcsecond data layer. Again, we compute the average value by district. The measure of rural

population density is missing by construction in cells (pixels) classified as urban by FAO. This fact

has two consequences: first of all, the variable we compute (the mean by district) is unaffected

by the presence of a high-density urban area in the district. Urban areas are basically considered

non existent when the district-wise average is taken. In addition, districts that encompass only

urban areas have a missing value on this variable. This also means that when we include rural

population density in regression models, we are excluding from the analysis urban-only districts.

Historical/political variables Finally, we collect data on transportation infrastructure and polit-

ical boundaries in the colonial era. For colonial borders, we rely on the historical political maps

published in geocoded format by the Harvard Geospatial Library. We compute the distance to the

closest colonial-era border. We also record to which mapping unit (e.g., large colonial administra-

tive unit) the district belonged as of 1900 and as of 1950.

To construct measures of colonial-era infrastructure, which we use for instrumental-variable

estimation in Section 5, we georeferenced a German road map of Africa as of 1941, found in the

collection of the library at Princeton University. For each road featured in the map, we also code

whether it is a “primary,” “secondary,” or lower-rank road. Then, from the shapefile with the

information about the roads, we create some district-level summaries about transportation infras-
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tructure in the colonial era. The first set of summaries are simply dummies (indicator variables)

that take the value of one if the district was crossed by a road in the colonial era. We rely on

current district borders, as defined in our main data source for administrative districts. We create

two dummy variables, Primary colonial and Secondary colonial, equal to one for those districts

that were crossed, at least in part, by colonial transportation infrastructure of either type. We also

create a third dummy, equal to one if there was any colonial road infrastructure in the district.

We also compute the (point to set) distance between the geometric center of the district, and

the closest road of each class. The road does not necessarily pass through the district and it is

not required to lie within the country to which the district belongs in the post-colonial period.

Roads in neighboring districts and, for that matter, in different countries, are also included in

the computation. Very high values mean that not only infrastructure was underprovided in that

district, but also in the overall region in which the district is located.5

3 BASIC ANALYSIS

The plot in Figure 1 displays the level of poverty (percentage of the population living on less than

two dollars a day) according to the IFPRI data, averaged by soil category, after controlling for

country fixed effects. Higher values of the soil production index reflect better soil. From the raw

data, then, it appears that, without conditioning on other district characteristics, poverty is more

of an issue in districts with better land.

To explore the pattern rigorously, we regress the measure of poverty on the measures of soil

quality. All the models include country fixed effects (omitted from the tables to improve read-

ability). The fixed effects capture the effect of all features of the districts that do not vary within

country. In addition, the standard errors are clustered at the country level: doing so accounts for

the fact that there might be remaining correlation in the errors at the district level even after the

inclusion of fixed effects to account for the nesting of the districts within countries. (Angrist and

Pischke 2009, chapter 8; see also Arellano 1987)

Model 1 measures soil quality with the first principal component of the 7 IIASA measures;
5As long as contemporary infrastructure is affected by the long-term patterns set in the colonial era, the fact that

the distance measures are calculated also based on colonial roads located very far from the district does not affect our
identification strategy directly. Above a certain level of remoteness, distance might not matter much. But this does not
violate the exclusion restriction.
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Model 2 includes the Soil production index; Model 3 uses the proportion of the district that is

classified as having good soil according to FAO’s problem soil classification. In all the models,

the coefficient on the measures of soil quality is estimated as positive, and substantively large; in

models 1 and 3, the association is statistically significant at conventional levels. According to the

estimate of Model 1, if we compare a district with soil quality at the first quartile with one at the

third quartile, the poverty rate in the latter is expected to be three percentage points higher than

in the former. This points to the fact that, on average, districts that have better land tend to have

higher poverty rates than districts with worse soil. This result is highly counterintuitive.
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Figure 1: Average poverty by category of soil productivity. The poverty figures are residuals from
a regression on country fixed effects.

It is interesting to note that, working on smaller datasets at different levels of aggregation

and on smaller samples of countries, the literature in agricultural economics has not been able

to establish a clear correlation between soil quality and development outcomes such as poverty

alleviation. If anything, the literature has found that the two tend not to be correlated in clear and
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statistically detectable ways, and when systematic relationships are detectable, they are at times

counterintuitive. For instance, Yamano and Kijima (2010a), studying a sample of households in

rural Uganda, find that soil quality (measured at the the household level) is associated with higher

crop income but lower non-crop income; Yamano and Kijima (2010b) find that soil quality has a

positive association with income in Kenya, but not in Uganda and Ethiopia. In a study of rural

Kenya, Okwi et al. (2007) estimate that improving soil fertility (from poor to good soil) would

“reduce poverty by up to one percentage point.”

Table 1: Basic models for poverty, soil quality, and transportation infrastructure

DV: Poverty rate (1) (2) (3) (4) (5) (6)

Intercept 78.97⇤⇤ 79.98⇤⇤ 79.37⇤⇤ 74.24⇤⇤ 59.6⇤⇤ 41.1⇤⇤
( 0.01 ) ( 0 ) ( 0 ) ( 5.55 ) ( 6.27 ) ( 5.35 )

Soil quality index 4.02⇤⇤ 4.13⇤⇤
( 0.29 ) ( 0.29 )

Soil production index 2 3.11
( 1.54 ) ( 2.1 )

Goodsoil 2.22⇤ 2.29⇤⇤
( 1.01 ) ( 0.8 )

Urbanization -1.15⇤⇤ -1.11⇤⇤ -1.07⇤⇤
( 0.11 ) ( 0.11 ) ( 0.11 )

Cultivation 0.19⇤⇤ 0.25⇤⇤ 0.27⇤⇤
( 0.02 ) ( 0.02 ) ( 0.02 )

Elevation 1.82⇤⇤ 1.64⇤⇤ 1.52⇤⇤
( 0.44 ) ( 0.49 ) ( 0.48 )

Elevation2 -0.07⇤⇤ -0.06⇤ -0.05+
( 0.02 ) ( 0.02 ) ( 0.02 )

Median slope -1 15.02⇤⇤ 33.63⇤⇤
( 5.17 ) ( 5.47 ) ( 5.29 )

Median slope2 -0.23 -4.1⇤⇤ -8.42⇤⇤
( 1.12 ) ( 1.2 ) ( 1.23 )

Basic models with poverty rate as dependent variable. Standard errors in parentheses. ⇤:
statistically significant at the 5% level.⇤⇤: statistically significant at the 1% level.

Using a much larger dataset, we are able to detect this counterintuitive positive correlation.

The result, as we show in the following subsection, survives the inclusion of controls for many of

the possible determinants of poverty. It is also worth bearing in mind that the model includes fixed

effects at the country level, so that all the features of the country that do not vary across districts

are accounted for. Hence, this correlation (or lack thereof) is not driven by the fact that poor
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countries have better soil than rich countries. The only variation used to estimate the coefficients

comes from variation in soil quality and in poverty across districts within each country.

The second set of models in Table 1 adjusts for some basic characteristics of the district: urban-

ization, cultivation (average percentage of the district that is cultivated), and quadratic terms for

elevation and for slope class. Poverty tends to be lower in more urbanized districts, and higher

in more cultivated districts 6; in addition, poverty increases (at a decreasing rate) with elevation

and (in Models 6 and 7) with steepness. Most importantly, the magnitude (and statistical signifi-

cance) of the coefficients on the soil quality measures are left unchanged when we include these

covariates.

The coefficient on soil quality should not, obviously, be interpreted as an estimate of a causal

effect. All we establish with these models is that, on average, districts with better soil tend to be

poorer, statistically significantly so in most cases. This is a snapshot of the existing situation, which

as we will show depends, in turn, on several observable factors. In the remainder, we explore this

counterintuitive correlation.

3.1 THE ROLE OF TRANSPORTATION INFRASTRUCTURE AND ACCESS TO MARKETS

The literature on rural infrastructure has shown the importance of roads for development (See

Ayogu (2007) for a review). This literature has not, however, explored the possible comple-

mentarities between agricultural factor endowments and infrastructure provision. Measures of

transportation infrastructure or market access are included in models of rural poverty in additive

fashion, overlooking the fact that the role of soil quality for development and poverty reduction

depends itself on the availability of infrastructure and the accessibility of markets. For instance,

Radeny and Bulte (2012) find that distance from the nearest market and the nearest town are nega-

tively associated with per capita income in Kenya; similarly, Okwi et al.(2007) include measures of

soil quality and of access to markets (distance from towns). Yet, these papers overlook the possible

complementarity between soil quality and market access.

Our empirical models take seriously the complementarity between factor endowment (and

soil quality in particular) and market access. We estimate econometrically the variation in the
6That urban districts are less poor is not surprising but an explanation of the positive correlation is left for future

research.
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soil/poverty association that is driven by the availability of transportation infrastructure. Here

and in the next section, we establish the following basic results: (1) the effect of soil on poverty

depends on transportation infrastructure, and (2) bad infrastructure might turn high soil quality

into a curse.

In the models reported in Table 2, we first include soil quality and the measure of transporta-

tion cost in isolation; then, we also include their interaction. The variable “road cost” measures the

transportation cost (averaged over the district), with higher values reflecting worse roads. Positive

values of the coefficient mean that worse roads are associated with more poverty. Transportation

cost is centered to have mean zero (and scaled so it has standard deviation one half), hence the

main effect of soil quality captures the effect of soil quality on poverty in a district with average

road quality, and symmetrically the main effect of road quality captures the effect of road quality

on poverty for a district with average soil quality. The interaction term captures how the associ-

ation between soil and poverty varies across different levels of road quality. In these models, we

do not include any controls (other than the country fixed effects). The models with a fuller set

of control variables are reported in the next subsection, where we probe the robustness of the re-

sults to various specifications. In Subsection 3.3, we also model non-parametrically the interaction

between infrastructure provision and soil quality.

In line with the conventional wisdom and results in the literature, lack of transportation in-

frastructure is systematically associated with poverty. The effect of infrastructure on poverty out-

comes has large economic significance too. According to the estimates of Model 1, if one compares

two districts in a given country, with the same soil quality, and respectively one standard devia-

tion below and one above the mean of road quality, they are expected to differ by 13 percentage

points in poverty.

The variables that capture soil quality are coded so that higher values mean better land. A pos-

itive coefficient on the soil quality measure means that better soil is associated with more poverty.

In a district that is average in terms of road cost, higher soil quality (as measured by the Soil

production index) is associated with higher poverty.

The interaction between the measure of soil quality and the measure of infrastructure captures

how the association between soil quality and poverty varies depending on the quality of trans-

portation infrastructure. This interaction between infrastructure and soil quality is a very strong
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predictor of poverty.

Table 2: Models with interaction between soil quality and transportation infrastructure

DV: Poverty rate (1) (2) (3) (4) (5) (6)

Intercept 75.82⇤⇤ 77.26⇤⇤ 77.33⇤⇤ 75.95⇤⇤ 77.12⇤⇤ 77.38⇤⇤
( 0.02 ) ( 0.01 ) ( 0.02 ) ( 0.09 ) ( 0.02 ) ( 0.02 )

Soil quality index 4.45⇤⇤ 4.17⇤⇤
( 0.28 ) ( 0.37 )

Road cost 12.81⇤⇤ 11.33⇤⇤ 10.27⇤⇤ 12.53⇤⇤ 11.54⇤⇤ 10.28⇤⇤
( 2.13 ) ( 2.26 ) ( 2.29 ) ( 2.13 ) ( 2.19 ) ( 2.3 )

Soil production index 1.8 1.59
( 1.57 ) ( 1.39 )

Goodsoil 2.09⇤ 2.12⇤
( 0.9 ) ( 0.87 )

Soil quality index by road cost 1.19+
( 0.68 )

Soil production index by road cost 5.09⇤
( 2.48 )

Goodsoil by Road cost 1.98
( 2.22 )

Models with poverty rate as dependent variable and interaction between measures of soil quality
and measures of infrastructure. Standard errors in parentheses. +: statistically significant at the 10%
level.⇤: statistically significant at the 5% level. ⇤⇤: statistically significant at the 1% level.

The coefficient on the interaction is positive in all models, and statistically significant (with

the exception of the model that uses the “goodsoil” measure). This points to the following impli-

cations: on the one hand, infrastructure is most beneficial when the quality of the soil is higher.

This is far from counterintuitive. In other words, providing infrastructure in places with low soil

quality should have a negligible effect on poverty (unless the infrastructure can be used to exploit

some other type of natural resource or lead to industrialization). From another perspective, good

soil helps reduce poverty only if there is infrastructure of sufficiently high quality. The evidence

points to the fact that in a place with average infrastructure, soil quality does not have a poverty-

reducing role. The coefficient on the main effect of soil quality (that captures the effect of soil

quality in a district with average quality infrastructure) is positive (and statistically significant in

Models 4 and 6). According to the estimates of Model 4, for instance, only if the road cost is more

than 1.5 standard deviations below its mean, soil quality starts having a poverty-reducing effect.
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In addition, the results for the interaction might potentially provide evidence (whose robustness

we probe below) that good soil can be a curse in the absence of infrastructure.

Again, these are not causal regressions (or estimates of structural parameters, for that matter)

but in terms of conditional expectations (and therefore, as descriptive summaries) they point to

the fact that infrastructure in most of Africa is insufficient for the available resources, in terms of

soil, to be used to significantly reduce rural poverty.

3.2 ROBUSTNESS CHECKS

There are several variables that have been shown in the literature to be associated with rural

poverty and which could drive the relationship we detect. While we deal directly with potential

endogeneity issues in Sections 4 and 5, here we show that the relationship we detect is robust to

the inclusion of several “obvious” controls. These can be thought as belonging to one of three

categories: geographic factors (e.g., elevation, terrain slope, and distance from the coast); demo-

graphic and economic factors (e.g., population density, proportion of land allocated to cultivation,

distance from large cities); and finally, long-term historical legacy factors (for instance, location in

the context of colonial political borders).

Accounting for other variables The models reported in Table 3 include measures of soil quality,

measures of infrastructure, and controls for geographic characteristics of the district. In particular,

we include average altitude of the district, median terrain slope of the district, and their squares

(to capture potential non-monotonicities in the associations), as well as measures about rivers:

the dummy for river districts, the rank class of the largest river in the district, and the average

rank class of rivers in the district. These controls turn out to be closely associated with poverty:

in particular, river districts seem to be systematically poorer than districts without rivers. The

models also estimate that both elevation and terrain slope have a non linear effect on poverty,

with poverty increasing faster when moving from sea-level flatland to somewhat elevated and

sloping terrain, and then tapering off at very high altitude. In fact, the highest poverty rate is

found at around 1200 meters, where poverty starts decreasing (as areas become, plausibly, less

populated) and similarly, in areas with median slope between class one and two.

In any case, the strong association between soil quality, infrastructure, and rural poverty that
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we detect and discuss in the previous Subsection, is robust to the inclusion of these controls.

The next set of controls we include have to do with demographic (broadly meant) and economic

characteristics of the district.

Excluding urban districts from the analysis In all of the analysis above, we include all the dis-

tricts in each country, but we account for level of urbanization in the regressions. Notice that

districts are often large enough to contain both urban and rural areas, and excluding all the dis-

tricts that contain also some urban areas would not be appropriate. We now show that the basic

results are unaffected if we drop from the analysis districts that can be classified as “urban” ac-

cording to some criteria. The first criterion is that the district lies in the top 2.5 percent of most

urbanized7; the second, that it lies in the bottom 2.5 percent of distance from the capital; the third

is that every cell in the district is classified as urban according to the FAO data on rural population

density. This leads to the exclusion of around 1100 districts from the analysis. Notice that these

exclusion criteria are quite stringent: the median excluded district has around 15 percent of its

surface classified as cultivated, and is only 6 percent urban overall. Importantly, the patterns we

detect cannot be considered to be driven by comparisons we are carrying out between rich and

urban areas (for which soil quality does not matter) and poor and rural areas. The results are

reported in the first two columns of Table 3.

Alternative measures of poverty In the section devoted to the dataset, we justify why we rely

mostly on the satellite-based estimate of poverty in our models. In spite of the limitations of the

alternative measures we collected, we now probe the robustness of our results if these alternative

measures of poverty and underdevelopment are used as dependent variables. We also create an

index as a simple average of the (rescaled) values of the poverty measures we have, and use it

as an alternative measure of poverty. The results using these alternative measures of poverty are

reported in columns 3–5 in Table 3.

7Specifically, we consider as urban a district that contains at least one cell with urbanization rate higher than 41
percent.
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Table 3: Robustness checks

DV: Poverty rate (1) (2) (3) (4) (5)

Intercept 79.04⇤⇤ 80.08⇤⇤ 57.62⇤⇤ 31.33⇤⇤ -2.04⇤⇤
( 0.24 ) ( 3.39 ) ( 0.01 ) ( 0.01 ) ( 0.02 )

Soil quality index 4.09⇤⇤ 3.01⇤⇤
( 0.5 ) ( 0.36 )

Road cost 3.45 5.28⇤⇤ 3.47⇤⇤ 1.79⇤⇤ 12.43⇤⇤
( 2.32 ) ( 1.61 ) ( 0.84 ) ( 0.39 ) ( 2.17 )

Soil quality index by road cost 4.12⇤⇤ 4.53⇤⇤
( 0.97 ) ( 0.69 )

Distance coast 0.87⇤⇤
( 0.11 )

River district 0.88
( 0.76 )

Elevation 1.87⇤⇤
( 0.37 )

Elevation2 -0.08⇤⇤
( 0.02 )

Median slope 4.39
( 3.17 )

Median slope2 -1.41⇤
( 0.68 )

Distance town -1.26⇤⇤
( 0.25 )

distance.border -0.87
( 1.52 )

distance.capital -0.24
( 0.17 )

Soil production index 1.36 -0.04 2.16
( 1.06 ) ( 0.4 ) ( 1.88 )

Soil production index by Road cost 1.86 0.78 5.98+
( 1.47 ) ( 0.67 ) ( 3.15 )

In models 1 and 2, more urbanized districts are excluded from the analysis. In models 3-5,
the alternative measures of poverty described in subsection 2.1 and an index that combine
the three available measures are used as dependent variables. Standard errors in parenthe-
ses. +: statistically significant at the 10% level. ⇤: statistically significant at the 5% level. ⇤⇤:
statistically significant at the 1% level.

21



3.3 CAN GOOD SOIL REALLY BE A CURSE?

The estimates reported above show that infrastructure has a stronger association with reduced

poverty in areas with good soil, and, symmetrically, soil quality has a stronger association with

reduced poverty in areas with good infrastructure. At the same time, the result could also be

interpreted as saying that when the quality of infrastructure is sufficiently bad, soil quality is

associated with increased poverty. This would point to the possible existence of a “curse” of good

soil: if we were to compare two districts, with equally insufficient infrastructure, the one with the

better soil would be expected to have a higher poverty rate than the one with the worse soil.

The linear multiplicative interaction is, by construction, symmetric; hence it cannot tell apart

a proper “curse” from the simpler claim that the return to infrastructure, in terms of poverty

alleviation, is higher in districts with higher soil quality. In addition, the multiplicative model

assumes linearity over the entire support of soil quality. In other words, the result we present

above for the interaction between soil and infrastructure might reflect exclusively the increase in

returns to soil quality when infrastructure is better (and symmetrically, the increase in returns to

infrastructure connecting to locations with good soil), rather than a potential curse that affects

locations that are poorly served in terms of infrastructure but “sit” on good soil. In sum, the inter-

action term might just capture the complementarity between soil endowments and transportation

infrastructure availability. Hence, the claim that good soil is associated with increased poverty

when infrastructure is insufficient and requires further evidence.

We address this issue by turning the soil quality measure and the infrastructure availability

measure into categorical variables and then estimating a model fully saturated in these categorical

variables. In practice, to estimate to what extent an actual curse is at work, we create a full set

of dummies for all the possible combinations of soil quality (turned into a six-category variable

by rounding to the nearest integer the value for the district) and road cost (turned into a three-

category variable, grouping in turn the bottom two levels and the middle two levels of road cost).

There is a total of 18 possible combinations in which both road cost and soil quality are observed,

plus those cases in which one of the two variables is not observed. We exclude from the analysis

the districts for which one of the two (or both) measures is not observed.
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We then estimate models of the form

yi = ↵j(i) + �Xi +
X

r

X

s

�r,s1(ri = r&si = s) + ✏i (1)

where the ↵ terms are just country fixed effects and the �r,s is the intercept for districts that belong

to the r road cost category and the s soil quality category. In other words, we include one intercept

for each combination of soil and road cost. We estimate two variants of the model. In one, we

simply include the dummies for the combinations of soil and infrastructure. In econometric terms,

these are fixed effects for the groups defined by a given soil and infrastructure combination. In

the second variant, we model the � as drawn from a normal distribution with variance estimated

from the data: the � coefficients are random effects for given soil-infrastructure combinations. The

advantage of this approach, as opposed to estimating them as fixed effects (or category dummies)

is that, whenever (or if) they are estimated imprecisely for a given category (for instance, because

there are few districts that belong to the category) they are shrunk towards zero, and the expected

level of poverty is shrunk towards the grand mean for the country (see Gelman et al. 2008; Ghitza

and Gelman 2013).

The plots in Figure 2 display the estimates from these models. For each category of road cost

and soil quality, we display the expected level of poverty based on the estimates of the saturated

model. Each line is for a given level of road cost (with darker lines indicating higher road cost

–hence worse infrastructure). On the horizontal axis is the Soil quality index, and on the vertical

axis the poverty level (re-centered). The plot on the top left is for a model that only includes

fixed effects for soil-road combination and country fixed effects, while the plot on the top right

is for a model that also includes controls: urbanization, the cultivation measure, the dummy for

the presence of a river in the district, distance from the capital, distance from towns of at least

20,000 inhabitants, distance from the coast, distance from the border, and quadratic polynomials

for elevation and terrain slope.

From the inspection of the two plots, one can infer that while poverty increases (all else equal)

with road cost, the association between soil quality and poverty is far from straightforward. In

the top two categories of road cost (the most remote districts with the worst transportation in-

frastructure) poverty turns out to be higher in districts with relatively high soil quality. While
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poverty is lower on average in the districts with the very best soil (category 6), categories 3 to 5 of

soil quality have on average higher poverty than districts with soil in the lowest categories. The

evidence suggests that poverty is at its worst when we have a combination of good soil and very

poor infrastructure.

The bottom two plots in Figure 2 probe this relationship further, by displaying the results from

estimation that models soil/road combination categories as random effects. The left plot only

includes the random effects for soil and road combination and the country fixed effects, while the

right plot includes the controls listed above.
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Figure 2: Saturated models for poverty. Darker lines represent districts with worse transportation
infrastructure.

Table 4 reports in tabular form the same information. For each combination of soil quality
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and road cost, we report the expected value of poverty according to the model estimates. The

coefficients on the controls are, unsurprisingly, not different in any substantial way from those in

the models reported in the main tables, hence we omit them to save space. Each row reports all

the estimates and, for the fixed effects estimations, also the standard error (in the columns labeled

“se”). So for instance, the first row in the table reports the estimates for road category one (districts

with very low road cost) and soil category one (districts with very bad soil).

Table 4: Non-parametric interactive models for poverty rate

road cost soil fe se fe+controls se re re+controls
1 1 38.09 13.96 58.14 17.01 -13.45 -0.58
1 2 43.75 6.05 62.75 12.17 -17.53 0.19
1 3 58.53 3.06 58.12 4.65 -5.51 -4.06
1 4 52.31 2.30 51.72 4.19 -11.75 -10.46
1 5 38.70 3.97 57.45 5.60 -23.98 -3.46
1 6 29.43 11.26 31.04 12.08 -21.63 -6.37
2 1 59.96 19.52 -1.50
2 2 68.31 5.26 69 6.43 3.67 2.97
2 3 76.19 2.10 64.99 3.93 11.87 1.41
2 4 78.41 1.80 68.43 3.86 14.16 4.83
2 5 73.26 2.52 62.72 4.18 8.92 -0.74
2 6 66.59 5.83 55.43 6.83 2.09 -4.05
3 1 57.29 3.91 60.36 4.66 -6.58 -2.59
3 2 69.24 2.36 65.25 3.92 4.95 1.50
3 3 80.52 1.68 69.53 3.75 16.25 5.80
3 4 81.46 1.56 71.08 3.79 17.22 7.39
3 5 78.63 1.82 70.54 3.89 14.34 6.75
3 6 72.94 3.02 65.27 4.42 8.45 1.46

Estimates from the saturated models, with district-level poverty rate as de-
pendent variable. In the columns labeled “fe” the estimates come from the
fixed-effects estimates, in the columns labeled “re” from random effects. The
columns labeled “se” report the standard errors from the fixed-effects estima-
tion.

3.4 UNDERSTANDING THE DISTRIBUTION/ALLOCATION OF INFRASTRUCTURE

In order to understand the phenomenon we highlight, we must examine which systematic pat-

terns can be detected in the allocation of infrastructure. For this purpose, we regress the measures

of road quality on geographic characteristics of the districts. In the first three columns of Table 5,

we report models that regress infrastructure on quadratic terms for elevation and terrain slope,
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on the dummy for river districts, and on the measures of distance from rivers, distance from the

coast, and distance from current borders. The measure of infrastructure we use is such that higher

values reflect higher transportation costs, hence worse transportation infrastructure. Positive co-

efficients therefore mean that a given variable is associated with worse roads. First of all, river

districts, and districts closer to rivers, tend to have significantly worse infrastructure. In addition,

infrastructure is worse in districts farther from the coastline, in districts closer to borders, and

in districts farther from the current capital. Finally, elevation and slope have non linear effects.

In the case of elevation, both terms are positive, implying that districts at sea level have better

infrastructure than districts at higher altitude.

Table 5: The mismatch between good soil and good infrastructure
DV: Road cost (1) Road cost (2) Road cost (3) Soil prod. (4) Soil prod.(5) Soil prod. (6)
Intercept 4.73⇤⇤ 4.73⇤⇤ 4.79⇤⇤ -8.6⇤⇤ 2.29⇤⇤ 2.35⇤⇤

( 0.11 ) ( 0.1 ) ( 0.11 ) ( 0.99 ) ( 0.36 ) ( 0.35 )
River district 0.12⇤⇤ 0.12⇤⇤ 0.13 0.08

( 0.03 ) ( 0.03 ) ( 0.09 ) ( 0.05 )
Elevation 0.01 0.01 0.02 -0.04 -0.04⇤ -0.03⇤

( 0.02 ) ( 0.02 ) ( 0.02 ) ( 0.04 ) ( 0.02 ) ( 0.01 )
Elevation2 0 0 0 0.01⇤ 0+ 0+

( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 )
Median slope -0.14 -0.13 -0.13 8.75⇤⇤ 1.38⇤⇤ 1.37⇤⇤

( 0.11 ) ( 0.1 ) ( 0.1 ) ( 0.92 ) ( 0.34 ) ( 0.34 )
Median slope2 0.03 0.03 0.04+ -2.05⇤⇤ -0.25⇤⇤ -0.24⇤⇤

( 0.02 ) ( 0.02 ) ( 0.02 ) ( 0.21 ) ( 0.07 ) ( 0.07 )
Distance coast 0.07⇤ 0.07⇤ 0.05 0.12 0.08+ 0.07

( 0.03 ) ( 0.03 ) ( 0.04 ) ( 0.08 ) ( 0.05 ) ( 0.05 )
Distance capital 0.42⇤⇤ 0.41⇤⇤ 0.44⇤⇤ -0.52⇤⇤ -0.15⇤⇤ -0.12⇤⇤

( 0.05 ) ( 0.05 ) ( 0.05 ) ( 0.13 ) ( 0.05 ) ( 0.04 )
Distance border -0.04+ -0.07⇤⇤ -0.01

( 0.02 ) ( 0.02 ) ( 0.03 )
Distance river -0.1⇤⇤ -0.09

( 0.03 ) ( 0.07 )
Distance 1950 border 0.04⇤⇤

( 0.01 )

In columns 1-3 the dependent variable is road cost; in columns 4-6 the dependent variable is soil quality (the soil pro-
duction index). Standard errors in parentheses. +: statistically significant at the 10% level. ⇤: statistically significant at
the 5% level. ⇤⇤: statistically significant at the 1% level.

3.5 WHERE IS THE GOOD LAND?

Here we describe in general terms, some patterns of association between soil quality and ob-

servable geographic characteristics of the districts. We regress the measures of soil quality on the
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quadratic terms for elevation and slope, the dummy for river district, another measure of presence

of rivers (the class rank of the largest river in the district), and distance from the coast. The best

land is located in river districts (even if the evidence is not strong enough to be statistically signifi-

cant at conventional levels), and in districts farther from the coast (also in this case not statistically

significant). In addition, soil quality is not correlated with distance from the border, while it is

worse farther from the capital. Again, we estimate quadratic polynomial terms in elevation and

terrain slope. According to the estimates, soil quality is maximum (all else equal) at an altitude of

200 meters. In addition, the coefficients on terrain slope also point to the fact that soil quality is

highest in “hilly” areas: soil quality is at a maximum when the median slope of the district is in

class three. We explore these non-linear effects in Figure 3.
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Figure 3: Expected values of soil quality (dashed) and road cost (solid) as a function of median
terrain slope in the district, from the models respectively columns 2 and 5 of Table 5.

The disconnect between good land and infrastructure The plot in Figure 3 displays the expected

value of soil quality (the dashed line) and of road cost (the solid line) as a function of the median
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terrain slope of the district. Higher values of road cost reflect lower transportation infrastructure

provision. The best soil is estimated to be located, all else equal, in hilly districts, while the worst

is in flat areas and, to a lesser extent, in mountain areas. The worst infrastructure is found in

mountainous areas with very steep terrain (i.e., right side of the plot). There is some mismatch

between soil quality and infrastructure provision, on average: the best land from the point of view

of soil quality is not the tract that attracts the best transportation infrastructure.

Our results implicitly suggest that rugged terrain is associated with poverty in Africa through

its effect on infrastructure provision. This seems to be at odds with Nunn and Puga (2012) which

indicates that ruggedness has a positive effect on economic development in Africa since more

rugged African countries have experienced less slave exports. However, we should note that their

measure of ruggedness captures “small-scale terrain irregularities, such as caverns, caves, and cliff

walls, that afforded protection to those being raided during the slave trades” (p. 21), while our

geographic controls (average elevation and average slope in the district) capture more “macro”

features of a given territory. In addition, once quality of institutions (measured by an index of

rule of law) is included in their model, Nunn and Puga (2012) find that their measure ruggedness

has no association with level of development. Our models include country fixed effects, that

capture all the institutional features of the country that do not vary across districts: our results

for geographic characteristics then have to be interpreted net of (country-specific) indirect effects

through quality of institutions.

4 ENDOGENEITY OF SOIL QUALITY

While the measures of soil quality we use are related to stable features of the soil, a significant

amount of literature has focused on the relationship between soil degradation and poverty, and

(of particular interest for our argument), on the potential spillovers from poverty to soil quality.

Such spillovers might take the form of poorer areas depleting the resources of the land, or failing

to use fertilizers and to engage in other practices that enhance soil fertility. (Drechsel et al., 2001)

The basic correlation we detect does not seem to support this type of mechanism directly: in

fact, in our data, poverty is associated with higher soil quality; if poverty-related soil degradation

were the main driver of soil quality in our data, we would expect soil quality and poverty to be
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negatively correlated. Nonetheless, we deem it worth investigating the robustness of our result.

In order to address this potential concern, we rely on the set of dummies described in Section

2.2 and based on a purely geological classifications of soil, using them as instruments for soil

quality. The soil classes have jointly quite strong predictive power for soil quality: around 11

percent of the variation in soil quality (as measured by the Soil production index) is explained by

the soil class dummies alone. When country fixed effects are included along with the soil class

dummies, around 23 percent of the variation in soil quality is explained by the model.

The first model in Table 6 reports the 2SLS estimate of the effect of soil quality on poverty in

isolation, the second model reports the estimates for soil quality interacted with road quality (us-

ing the interactions between road quality and geological classes as instruments for the interaction)

and the third model reports the estimates of a specification including all the control variables dis-

cussed in the previous section. The unconditional association between soil quality and poverty

is again positive, and the interactive model confirms the findings presented in the previous sec-

tion: soil quality is a blessing in districts with high-quality infrastructure, but might be a curse in

districts in which transportation infrastructure is underprovided.

5 ENDOGENEITY OF INFRASTRUCTURE

One might be more concerned that the associations we report are driven by possible endogeneity

of the amount of infrastructure to rural poverty. In other words, current infrastructure provision

might be driven by current rural poverty, or by other (unobserved) contemporary features that

also affect poverty levels. For this reason, we want to show that the systematic relationship be-

tween infrastructure provision and rural poverty that we document in the previous sections sur-

vives if a temporally pre-determined instrument, colonial transportation infrastructure, is used

to correct for possible endogeneity of current transportation infrastructure to rural poverty. It is

worth noting that endogeneity of infrastructure would not explain why we find that better soil in

the absence of infrastructure is associated with more poverty. Also, as documented in the previ-

ous section, using purely geological features of the soil as an instrument for soil quality leaves our

main results unaffected. In any case, in order to establish with more confidence the role played

by infrastructure, we use the presence of transportation infrastructure in the colonial period as an
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Table 6: IV models, with soil quality instrumented by geological classification

DV: Poverty rate (1) (2) (3) (4) (5)

Intercept 75.36⇤⇤ 75.55⇤⇤ 65.68⇤⇤ 58.01⇤⇤ 65.68⇤⇤
( 0.02 ) ( 0.22 ) ( 2.33 ) ( 0.02 ) ( 2.74 )

Soil quality index 27.8⇤⇤ 25.63⇤⇤ 25.83⇤⇤ 25.83⇤⇤
( 2.58 ) ( 4.04 ) ( 4.69 ) ( 4.06 )

Road cost 13.68⇤⇤ 13.31⇤⇤ 7.02⇤⇤ 2.62⇤ 7.02⇤⇤
( 2.2 ) ( 2.45 ) ( 1.53 ) ( 1.05 ) ( 1.65 )

Soil quality index by road cost 4.8 17.21⇤ 17.21⇤
( 7.74 ) ( 8 ) ( 7.48 )

Rural pop. density 5.75⇤⇤ 5.75⇤⇤
( 0.7 ) ( 1.28 )

Soil production index 3.22⇤⇤
( 1.23 )

Soil production index:road cost 8.29+
( 4.37 )

Urbanization -0.98⇤⇤
( 0.07 )

Cultivation 0.08
( 0.07 )

Instrumental variable models, with district-level poverty rate as dependent variable,
and geological dummies as instruments for soil quality. Standard errors in parentheses.
+: statistically significant at the 10% level. ⇤: statistically significant at the 5% level. ⇤⇤:
statistically significant at the 1% level.

instrument for current infrastructure provision.

5.1 FIRST-STAGE RELATIONSHIP

In Table 7 we report the first-stage relationship between contemporary roads and colonial roads.8

If we regress the (standardized) measure of road cost on dummies for countries and a dummy for

whether a district had a primary road in colonial times, the estimate is negative (implying that

transportation costs are lower today in districts that had a primary road in the colonial era) and

highly statistically significant (even after correcting for clustering by country of the errors). From

the substantive point of view, having a primary road in colonial times leads to a reduction of one-

tenth of a standard deviation in contemporary road costs. The results are analogous if instead
8These are not the actual first stages, because the ones actually used in the IV models also include the control

variables included in the second stage. These pseudo-first-stages are reported here to show how colonial infrastructure
induces variation in our contemporary infrastructure provision measures.
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of the dummies for presence of colonial roads, we use (log) distance from a primary colonial

road: higher distance is statistically significantly associated with higher road costs. The third

model includes both the dummy for primary colonial road in the district and (log) distance from

a primary colonial road. In this case, only the coefficient on the distance measure is statistically

significant. The result is robust to the inclusion of a dummy for presence of secondary colonial

roads and (log) distance from a secondary colonial road. The estimates for this model are reported

in the fourth column of Table 7. Again the (log) distance from a primary colonial road has a highly

statistically significant positive effect on current road cost. In addition, this relationship is not

driven by observable third variables that affect both colonial and contemporary infrastructure.

The model in columns 5 and 6 of Table 7 show how the relationship survives the inclusion of

many geographic characteristics of the district. The coefficient on the dummy for colonial primary

road is -0.04 (clustered-robust standard error 0.02), and the coefficient on (log) distance from a

colonial road is .06 (with clustered standard error .01) after controlling for the following: quadratic

polynomials for elevation and slope, ruggedness (standard deviation of slope within district),

distance from the coast, presence of a river, and area of the district. Similarly, the coefficient on the

(log) distance of the district from a colonial primary road is still positive, and highly statistically

significant.

The estimates reported in column 6 show that the results do not depend on the specific measure

of contemporary infrastructure we use: in this case, the response variable is not the road cost

index, but the (log) distance of the center of the district from a contemporary major road, based on

the FAO Major Roads map. Finally, the model in the last column of the table reports the estimates

of a regression of (standardized) road cost on the two colonial infrastructure measures, without

country fixed effects. Again, current transportation costs are predicted by the distance from a

primary colonial road.

The instruments based on colonial roads are far from weak. In the model with no country

fixed effects, but only the colonial roads measures, the R2 is 0.13, and the F-statistic for the whole

regression is 356.8. In the model of column 5, with geographic controls and country fixed effects,

the R2 is 0.37, and the F-statistic is 39.7. A considerable portion (13 percent) of the variation

in current road costs is explained by colonial patterns alone, and more than a third of it can be

explained by country effects, colonial patterns, and stable geographic characteristics of the district.
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Table 7: First stage estimates for road cost instrumented by colonial roads
DV: Road cost (1) (2) (3) (4) (5) (6) (7)

Intercept 0.41⇤⇤ 0.52⇤⇤ 0.51⇤⇤ 0.51⇤⇤ 0.41⇤⇤ -0.83⇤ 0.22⇤⇤

( 0.01 ) ( 0.02 ) ( 0.02 ) ( 0.02 ) ( 0.08 ) ( 0.37 ) ( 0.05 )
Colonial road dummy -0.21⇤⇤ 0.02 0.02 -0.04⇤ -0.01 0.09

( 0.02 ) ( 0.03 ) ( 0.03 ) ( 0.02 ) ( 0.06 ) ( 0.06 )
Distance primary colonial 0.12⇤⇤ 0.12⇤⇤ 0.12⇤⇤ 0.06⇤⇤ 0.2⇤⇤ 0.14⇤⇤

( 0.01 ) ( 0.02 ) ( 0.02 ) ( 0.01 ) ( 0.03 ) ( 0.02 )
Distance secondary colonial 0.01

( 0.01 )
Secondary colonial road dummy 0

( 0.04 )
Distance coast 0.01⇤⇤ -0.03⇤⇤

( 0 ) ( 0.01 )
River district 0.04⇤⇤ 0.09

( 0.01 ) ( 0.07 )
Elevation 0.01 0.16⇤⇤

( 0.01 ) ( 0.03 )
Elevation2 0+ -0.01⇤⇤

( 0 ) ( 0 )
Median slope -0.03 -0.22

( 0.07 ) ( 0.31 )
Median slope2 0.01 0.06

( 0.01 ) ( 0.07 )
Standard deviation slope 0.03 0.03

( 0.02 ) ( 0.09 )
Area 0.02⇤⇤ 0

( 0 ) ( 0.01 )

First stage estimates, with road cost instrumented by the colonial roads measures. Standard errors in parentheses.
+: statistically significant at the 10% level. ⇤: statistically significant at the 5% level. ⇤⇤: statistically significant at
the 1% level.

5.2 PLAUSIBILITY OF THE “AS GOOD AS RANDOMLY ASSIGNED” ASSUMPTION: FUR-

THER EVIDENCE

In the previous subsection, we showed how contemporary infrastructure is affected by patterns in

transportation infrastructure provision in the colonial era. We now want to demonstrate that one

main driver of the decisions made in the colonial era is the location of natural resources that can

be exploited by the extractive/mining industry. For this purpose, we rely on the data assembled

by the U.S. Geological Survey. This reports the location of several mineral-related activities (like

mines, quarries, refineries, smelters). The data refers to the year 2003. We only focus on mines,

quarries, and wells. The data refer to the current knowledge about location of minerals, and the

current location of extractive sites, while ideally we’d like to use information about a) knowledge

in the colonial period regarding the location of minerals, and b) actual extractive activities in the
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colonial era. Unfortunately, information of that kind is not available. Historical data are not read-

ily available but the presence of mines and quarries in the colonial era should be highly correlated

with their presence in 2003, the year to which our map refers. The use of this imperfect source

adds some measurement error but, if anything, this should lead to attenuation bias (as long as the

measurement error does not depend itself on colonial roads). We create some variables based on

the geographic information about the location of extractive activities. In particular, we compute

two summaries. The first is the distance between the geometric center of the district, and the clos-

est mining location, regardless of whether the mine lies within or outside the district. The second

is just a dummy that takes the value of one if there is a mine in the district. 9

We then regress the various summaries of colonial infrastructure availability on the summaries

that reflect the presence of valuable minerals. The results of these estimations are reported in Table

8. Consistently with our expectation, there is a very high, and statistically significant, correlation

between the location of mines, quarries and wells, and the presence of infrastructure in the colonial

era. A logit regression of the dummy for whether a district has a primary road in the colonial era

on a dummy for whether there is an extractive site in the district (and accounting for separate

intercepts by country) yields a coefficient of 0.89 (standard error 0.17). A rough approximation

of the effect on probability scale is that the probability of having a colonial road is around 22

percentage points higher in mining districts than in non-mining districts.10

In addition, we want to test whether colonial decisions were affected by the quality of farm-

land. Indeed, it would pose problems to our IV strategy if one of the main objectives colonial

powers had when building transportation infrastructure was connecting high-quality farmland to

cities or seaports. In order to assess what are the factors associated with better infrastructure in

colonial times, we estimate regressions analogous to those in the previous paragraph, but we also

include measures of soil quality. We also estimate simpler regressions with just the soil quality

measures, excluding the mining activity variables, to show how the lack of association between

colonial infrastructure and soil quality is negligible regardless of the specification. The results are
9We cannot differentiate between types of minerals extracted, because there are too many categories, and it is not

obvious how to allocate them to a smaller number of categories that would be manageable for econometric estimation.
10Similarly, in a regression of (log) distance of the district center from a “primary” colonial road on (log) distance of

the district from a mine, with fixed effects by country, the coefficient is approximately .2 (with cluster-robust standard
error .06), implying that a one-percent increase in distance from a mine leads on average to a .2 percent increase in
distance from primary colonial roads.
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Table 8: Location of colonial roads
(1) (2) (3) (4) (5) (6) (7) (8)

Distance mine 0.2⇤⇤ 0.15⇤ 0.17⇤

( 0.06 ) ( 0.07 ) ( 0.07 )
Mining district dummy 0.89⇤⇤ 0.47⇤ 0.52⇤⇤

( 0.17 ) ( 0.18 ) ( 0.18 )
Distance coast 0.05⇤⇤ -0.06⇤

( 0.02 ) ( 0.02 )
Elevation -0.03⇤ 0.12⇤⇤

( 0.02 ) ( 0.03 )
Median slope -0.42⇤ 1.93⇤⇤

( 0.19 ) ( 0.34 )
Elevation2 0 0⇤⇤

( 0 ) ( 0 )
Median slope2 0.11⇤⇤ -0.43⇤⇤

( 0.04 ) ( 0.07 )
Soil production index 0.04 -0.05 0.04 -0.05

( 0.1 ) ( 0.07 ) ( 0.09 ) ( 0.07 )

Models for the location of the colonial roads. The models in odd-numbered columns are linear models with log
distance from a first-class colonial road as dependent variable; the models in even-numbered columns are logit models
with the presence of a first-class colonial road in the district as dependent variable. Standard errors in parentheses. +:
statistically significant at the 10% level. ⇤: statistically significant at the 5% level. ⇤⇤: statistically significant at the 1%
level.

reported in Table 8.

When we include the Soil production index alongside the measures based on extractive activ-

ities, the estimate of the effect of soil quality is nowhere near statistical significance. In the model

with (log) distance as the dependent variable, the point estimate is positive. The magnitude is

quite small, implying that a move from one standard deviation below to one standard deviation

above the mean of the Soil production index would lead to an expected increase by less than 0.05

of a percentage point in distance from a colonial road. In the logistic model, the point estimate

of the coefficient on soil productivity is negative, implying an approximate decrease in the prob-

ability that the district has a colonial road by one percentage point following a move from one

standard deviation below to one above the mean of soil quality. The coefficient on the dummy for

an extractive site is still statistically significant, even though the magnitude of the point estimate is

slightly smaller, 0.52, with standard error 0.17, implying a rough estimate of a 13 percentage point

increase in the probability of a district having a primary colonial road in mining districts. These

results are not driven by the inclusion of both the mine measure and the soil measure: when in-

cluded in isolation, soil productivity has no predictive power for distance from a primary colonial
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road or for the probability of having a primary colonial road. The coefficients are unchanged from

the models that include both extractive activities and soil quality.

The evidence points to the fact that colonial decisions regarding where to build roads were not

driven by the desire to connect high-quality farmland but, rather, to reach mining and quarrying

areas. In addition, regressions of soil productivity on distance from mines (not reported) show

that there is no relationship between the presence of mines and soil quality. This evidence is

far from surprising, but reassuring for our identification strategy, and it justifies our decision to

use colonial roads as an instrument. Roads today depend on roads in the colonial period, but the

factors that influenced the colonial powers’ decisions regarding where to build roads are not those

we consider (and show to be) important to understand contemporary patterns of rural poverty.

In any case, we should not lose sight of the fact that what we need is a source of variation in in-

frastructure that is unaffected by current levels of rural poverty and by unobserved current factors

that also affect rural poverty. For this purpose, it is sufficient that colonial infrastructure is “ran-

domized” by the presence of valuable minerals. There might be alternative paths through which

the presence of colonial roads or the presence of valuable minerals might affect contemporary

levels of rural poverty. Subsection A.1 deals with possible violations of the exclusion restriction.

5.3 IV REGRESSION RESULTS

The estimates of the 2SLS regressions instrumenting for current infrastructure with colonial-era

infrastructure are reported in Tables 9 (with default 2SLS standard errors) and 10 (with standard

errors clustered by country). In all the models, the excluded instruments are the (log) distance of

the center of the district from the closest primary colonial road, and the dummy for districts that

had a primary colonial road.

The model in the first column of Table 9 is the IV counterpart of Model 1 in Table 2: it includes

only country fixed effects, a measure of soil quality (the one based on the first principal component

of seven soil constraint measures), and the measure of road cost. The interaction is not included

in this model. Confirming the results of the non-IV model, both road cost and soil quality have a

positive effect on poverty. The models in the second and third columns are the IV counterparts of

Models 4 and 5 in Table 2. Again, better soil (whether measured with the Soil production index
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or the first principal component) is associated with higher poverty. In addition, the coefficients on

transportation costs and their interaction with soil quality are again positive.

One can infer that high transportation costs – and poor transportation infrastructure – con-

tribute in a substantial way to creating or perpetuating rural poverty; the absence of infrastruc-

ture has a much stronger effect in districts with better soil; finally, lack of infrastructure potentially

makes a soil rich district pooer. The models in the fourth and fifth columns restrict the analysis to

districts that are not located in the proximity of a major urban area: the coefficients are identified

only from the comparison of districts that are approximately equally remote. In this model, the

main effect of soil quality (as measured by the first principal component of the seven constraints)

and its interaction with road cost are positive and statistically significant (regardless of whether

one uses default or clustered standard errors). The main effect of road cost is negative (and statis-

tically significant), though.

Model 5 includes a host of control variables related to physical and political geography. The

coefficients on these variables are broadly analogous to those estimated in the “vanilla” regres-

sions of Table 2. Also, in this model both soil quality and the interaction between soil quality and

road cost are positive (and statistically significant regardless of the estimator used for the standard

errors) while the main effect of road cost is not statistically significant.

Model 5 estimates the IV model instrumenting both for soil quality (using geological measures

as instruments, as in the previous section) and for infrastructure using the colonial roads instru-

ments. In this model (that includes no additional controls other than the country dummies) the

three coefficients are estimated to be positive, and both the interaction and the main effect of road

cost are highly statistically significant (when using the default 2SLS standard errors; only the main

effect is statistically significant with the clustered standard errors).11

11In this model, all the excluded instruments – and their interactions – are used to instrument each of the three
endogenous variables: soil quality, road cost, and their interaction. It is worth reporting that the R2 of the first stage for
soil quality is unchanged whether one uses only the geological measures or also the colonial infrastructure instruments.
This is far from surprising, but confirms that we are using only geology-induced variation to estimate the coefficient on
soil quality. Similarly, the inclusion of the geology measures do not increase the fit of the first stage for infrastructure,
which confirms that the variation we are using to estimate the effect of road cost comes from variation in the presence
of colonial roads only.
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Table 9: IV models, with road cost instrumented by location of colonial roads
DV: Poverty rate (1) (2) (3) (4) (5)

Intercept 77.59⇤⇤ 77.81⇤⇤ 79.36⇤⇤ 82.96⇤⇤ 79.93⇤⇤

( 1.59 ) ( 1.59 ) ( 1.71 ) ( 1.56 ) ( 3.62 )
Soil quality index 4.3⇤⇤ 3.77⇤⇤ 2.9⇤⇤ 2.9⇤⇤

( 0.13 ) ( 0.22 ) ( 0.36 ) ( 0.43 )
Road cost 5.57⇤⇤ 5.18⇤ 1.52 -11.54⇤⇤ -1.82

( 2.04 ) ( 2.04 ) ( 2.17 ) ( 2.57 ) ( 3.4 )
Soil quality index by Road cost 2.23⇤⇤ 7.93⇤⇤ 4.64⇤⇤

( 0.75 ) ( 1.33 ) ( 1.5 )
Soil production index 1.51⇤

( 0.67 )
Soil production index by Road cost 12.87⇤⇤

( 2.66 )
Distance coast 0.95⇤⇤

( 0.15 )
River district 1.28⇤

( 0.59 )
Elevation 1.89⇤⇤

( 0.22 )
Elevation2 -0.08⇤⇤

( 0.01 )
Median slope 4.52

( 2.83 )
Median slope2 -1.42⇤

( 0.62 )
Distance town -1.13⇤⇤

( 0.14 )
Distance border -1.01⇤

( 0.43 )
Distance capital -0.23⇤

( 0.1 )

Instrumental variable estimates, with poverty rate as dependent variable and road cost instru-
mented by measures of colonial infrastructure. Standard errors in parentheses. +: statistically
significant at the 10% level. ⇤: statistically significant at the 5% level. ⇤⇤: statistically significant at
the 1% level.

5.4 FURTHER TESTS: CONDITIONING ON MINING SITES; SENSITIVITY TO VIOLATIONS

Above, we show that the location of colonial infrastructure is driven, to a significant extent, by

the location of mining and other extractive sites. Now, one could wonder whether this constitutes

a challenge to the exclusion restriction (which requires that the location of colonial infrastructure

does not affect contemporary rural poverty other than through the persistence of colonial trans-

portation infrastructure on contemporary post-colonial infrastructure). We address this issue in

several ways.

First of all, we condition on the location of mines in the 2SLS models for rural poverty. In-

deed, if the challenge has to do with the fact that mines affect colonial roads, colonial roads affect
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Table 10: IV models, with road cost instrumented by location of colonial roads
DV: Poverty rate (1) (2) (3) (4) (5)

Intercept 77.59⇤⇤ 77.81⇤⇤ 79.36⇤⇤ 82.96⇤⇤ 79.93⇤⇤

( 0.09 ) ( 0.25 ) ( 0.06 ) ( 0.39 ) ( 3.7 )
Soil quality index 4.3⇤⇤ 3.77⇤⇤ 2.9⇤⇤ 2.9⇤⇤

( 0.32 ) ( 0.6 ) ( 0.73 ) ( 0.5 )
Road cost 5.57⇤ 5.18⇤ 1.52 -11.54⇤⇤ -1.82

( 2.44 ) ( 2.31 ) ( 2.28 ) ( 2.44 ) ( 2.01 )
Soil quality index by Road cost 2.23 7.93⇤⇤ 4.64⇤

( 1.85 ) ( 2.5 ) ( 1.83 )
Soil production index 1.51

( 1.3 )
Soil production index by Road cost 12.87

( 8.21 )
Distance coast 0.95⇤⇤

( 0.12 )
River district 1.28+

( 0.75 )
Elevation 1.89⇤⇤

( 0.36 )
Elevation2 -0.08⇤⇤

( 0.02 )
Median slope 4.52

( 3.4 )
Median slope2 -1.42+

( 0.72 )
Distance town -1.13⇤⇤

( 0.25 )
Distance border -1.01

( 1.48 )
Distance capital -0.23

( 0.17 )

Instrumental variable estimates, with poverty rate as dependent variable and road cost instru-
mented by measures of colonial infrastructure. Standard errors clustered by country in parenthe-
ses. +: statistically significant at the 10% level. ⇤: statistically significant at the 5% level. ⇤⇤:
statistically significant at the 1% level.

contemporary roads, but mines also affect rural poverty independently, then conditioning on the

presence of mines “blocks” the direct path that runs from the existence of a mining industry to

contemporary rural poverty. Yet, we note that this also reduces the amount of variation in colonial

roads that we are exploiting for the IV analysis. The model is reported in the first column of Table

11. Again we estimate both the main effects of soil quality and road cost, and their interaction, to

be positive and statistically significant. This provides evidence that our IV strategy is not invalid

due to the direct effect of mining on rural poverty. At the same time, the coefficient on the mining

district dummy is negative and statistically significant: mining districts experience, on average

and all else equal, lower levels of rural poverty. The effect is of some (albeit modest) economic
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significance: rural poverty rates in mining districts are approximately 3.7 percentage points lower

than in non-mining districts located in the same country.12

In addition, we control for some observable characteristics of the district in recent times while

including also the dummy for mining districts. In particular, if colonial infrastructure, or the lo-

cation of mines, affects contemporary rural poverty through the presence of urbanized areas, this

would challenge our assumption. It should also be kept in mind that we control for urbanization

levels, and in some models we also exclude observations that are very close to urban areas.13 The

second column of the table reports one of these models, that controls for distance from towns,

distance from the border, distance from the coast, presence of a river, distance from the capital,

the polynomials for elevation and slope, and the dummy for mining districts. As usual, contem-

porary infrastructure is instrumented with the two measures based on colonial roads. The main

effect of soil quality, and the interaction of soil quality and road cost, are both positive and statisti-

cally significant, while the main effect of road cost does not reach conventional levels of statistical

significance (with a standard error larger in absolute value than the point estimate). Again this

corroborates the robustness of the interaction effect on which we focus. In this model, too, the

coefficient on the dummy for mining districts is negative and statistically significant, implying

that, all else equal, rural poverty in mining districts is around 4.3 percentage points lower than in

non-mining districts.

Third, we treat the location of mines as an instrument, and we include it in the set of excluded

instruments alongside colonial-era infrastructure. As discussed above, the presence of natural re-

sources can affect current levels of rural poverty. In order to test the sensitivity of our results to

violations of the exclusion restriction, we perform sensitivity analysis using the “local to zero” ap-

proach proposed by Conley et al. (2012). The model in the third column of the table uses the two

measures based on colonial infrastructure, and the dummy for mining districts, as instruments for

contemporary infrastructure. Again the three coefficients are positive, and statistically significant.

(The coefficient on the interaction, but not those on the main effects, drops out of statistical sig-

nificance when clustered standard errors are used.) The model in the fourth column shows that
12The estimate of the effect of mining on rural poverty in a district is net of the country-wide (spillover) benefits

that several countries, e.g., Botswana and South Africa, might derive from the presence of an extractive industry, or
national-level resource-curse effects that might obtain elsewhere.

13In addition, when we include rural population density as a control, completely urban districts drop out of the
analysis because rural population density is missing by construction (in the original data) for urban areas.
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the result is robust even if using a broad set of controls (all those included in the model in the

second column) and the other measure of soil quality (the soil production index). Again, there’s a

positive, and statistically significant, interaction between soil quality and infrastructure.
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Table 11: Robustness checks for the instrumental variable models

DV: Poverty rate (1) (2) (3) (4)

Intercept 78.18⇤⇤ 80.14⇤⇤ 77.84⇤⇤ 60.21⇤⇤
( 1.6 ) ( 3.62 ) ( 1.59 ) ( 3.8 )

Soil quality index 3.78⇤⇤ 2.89⇤⇤ 3.78⇤⇤
( 0.22 ) ( 0.43 ) ( 0.22 )

Road cost 5.2⇤ -1.93 5.06⇤ 1.29
( 2.04 ) ( 3.4 ) ( 2.04 ) ( 3.37 )

Mining district dummy -3.74⇤⇤ -4.29⇤⇤
( 1.36 ) ( 1.18 )

Soil quality index by road cost 2.25⇤⇤ 4.7⇤⇤ 2.2⇤⇤
( 0.75 ) ( 1.5 ) ( 0.75 )

Distance coast 0.94⇤⇤ 0.99⇤⇤
( 0.15 ) ( 0.16 )

River district 1.29⇤ 1.44⇤
( 0.59 ) ( 0.62 )

Elevation 1.93⇤⇤ 1.73⇤⇤
( 0.22 ) ( 0.23 )

Elevation2 -0.08⇤⇤ -0.06⇤⇤
( 0.01 ) ( 0.01 )

Median slope 4.41 23.15⇤⇤
( 2.83 ) ( 2.89 )

Median slope2 -1.38⇤ -5.96⇤⇤
( 0.62 ) ( 0.62 )

Distance town -1.12⇤⇤ -1.57⇤⇤
( 0.14 ) ( 0.14 )

Distance border -0.99⇤ -0.7
( 0.43 ) ( 0.45 )

Distance capital -0.23⇤ -0.1
( 0.1 ) ( 0.1 )

Soil production index -0.03
( 0.69 )

Urbanization -19.34⇤⇤
( 1.54 )

Soil production index by road cost 8.66⇤⇤
( 3.23 )

Further robustness checks: controlling for the direct effect of mining, and using
mining as an instrument. Default 2SLS standard errors in parentheses. +: statis-
tically significant at the 10% level. ⇤: statistically significant at the 5% level. ⇤⇤:
statistically significant at the 1% level.

41



Table 12: Robustness checks for the instrumental variable models

DV: Poverty rate (1) (2) (3) (4)

Intercept 78.18⇤⇤ 80.14⇤⇤ 77.84⇤⇤ 60.21⇤⇤
( 0.34 ) ( 3.66 ) ( 0.25 ) ( 5.5 )

Soil quality index) 3.78⇤⇤ 2.89⇤⇤ 3.78⇤⇤
( 0.67 ) ( 0.5 ) ( 0.6 )

Road cost 5.2+ -1.93 5.06⇤ 1.29
( 2.71 ) ( 2.01 ) ( 2.32 ) ( 1.83 )

Mining district dummy -3.74⇤ -4.29⇤⇤
( 1.73 ) ( 1.08 )

Soil quality index by Road cost 2.25 4.7⇤ 2.2
( 2.13 ) ( 1.81 ) ( 1.85 )

Distance coast 0.94⇤⇤ 0.99⇤⇤
( 0.12 ) ( 0.12 )

River district 1.29+ 1.44+
( 0.75 ) ( 0.85 )

Elevation 1.93⇤⇤ 1.73⇤⇤
( 0.36 ) ( 0.44 )

Elevation2 -0.08⇤⇤ -0.06⇤⇤
( 0.02 ) ( 0.02 )

Median slope 4.41 23.15⇤⇤
( 3.33 ) ( 5.14 )

Median slope2 -1.38+ -5.96⇤⇤
( 0.7 ) ( 1.19 )

Distance town -1.12⇤⇤ -1.57⇤⇤
( 0.26 ) ( 0.29 )

Distance border -0.99 -0.7
( 1.49 ) ( 1.52 )

Distance capital -0.23 -0.1
( 0.17 ) ( 0.18 )

Soil production index -0.03
( 0.98 )

Urbanization -19.34⇤⇤
( 2.89 )

Soil production index by Road cost 8.66
( 5.91 )

Further robustness checks: controlling for the direct effect of mining, and using
mining as an instrument. Standard errors clustered by country in parentheses. +:
statistically significant at the 10% level. ⇤: statistically significant at the 5% level. ⇤⇤:
statistically significant at the 1% level.
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6 EXPLORING THE MECHANISM: THE ROLE OF EDUCATION IN A CASE

STUDY OF KENYA

6.1 THE DATA

Human capital might provide a possible mechanism mediating the relationship between soil qual-

ity, isolation, and rural poverty, and potentially leading to the “curse” of good soil in isolated areas

that we detect in the continent-wide data. We use a case study of Kenya to explore the role played

by human capital investment. Kenya is a good choice for a case study for various reasons. First

of all, it is a large country, divided in a large number of districts (311), guaranteeing that there is

sufficient variation in the explanatory variables to arrive at precise estimates. In addition, Kenya

Open Data (https://opendata.go.ke) publishes education information that can be combined with

the georeferenced information on soil quality and roads that we use in the main analysis. This

provides a unique opportunity to study the mechanism in detail. In particular, Kenya Open Data

provides two school-level datasets, one for primary and one for secondary schools, with geo-

graphic coordinates of each school. For primary schools, information about total enrollment, the

pupil teacher ratio, and the pupil classroom ratio is available. For secondary schools, total en-

rollment in 2007, total teaching staff, and the pupil teacher ratio are reported. Both datasets also

report other variables that are not directly relevant for our analysis.

We overlay the map of the level 3 administrative districts we use in the rest of the analysis on

the school locations. We then compute summaries by district: the mean of pupil-teacher ratio and

pupil-classroom ratio, the total enrollment in the district, and the total number of teachers in the

district. We also compute the distance of the geometric centroid of the district to the closest school,

and the number of primary and secondary schools in the district. We merge these new variables to

the data for Kenya from the main dataset used in the rest of the paper. We also add the population

of the district, computed based on the spatial data on the total population in Sub-Saharan Africa,

distributed by FAO.

We also create a second dataset for Kenya, based on different information published by Kenya

Open Data. In this dataset, the country is subdivided in 71 districts, whose boundaries do not

coincide with the level-3 administrative divisions used in the rest of the paper. The names of these
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districts can be matched with those used in the data on the percentage distribution of school age

population who never attended school (for 2005/6). In addition, the School Attendance Data by

District dataset, that is georeferenced, can be combined with the spatial data on soil and infras-

tructure. We can therefore compute, for each of these 71 districts, the percentages and the total

counts for school attendance and non-attendance at various levels of education. We also recal-

culate, based on the sources discussed in the main data section of the paper, the summaries of

soil quality (based on the FAO Soil production index), transportation infrastructure (the Road cost

index), elevation, urbanization, and rural population density. Furthermore, we also recreate the

soil type dummies, based on the Digital Soil Map of the World (DSMW) geological data we used

in the main IV estimation for soil quality, and the summaries for the presence of transportation

infrastructure in the colonial era used in the IV for infrastructure.

6.2 THE RESULTS

Two main results emerge from the analysis of the education data for Kenya. First of all, areas

with better soil tend to experience lower school enrollment rates, after accounting for a basic set

of district-level features; second, these same areas seem to have worse and fewer schools.

Table 13 reports the estimates of a first set of models, based on the data created with the more

fine-grained map. The first two columns report the coefficient estimates for linear regression mod-

els with log total enrollment respectively in primary and secondary schools as response variable;

the outcome in the models reported in the next two columns is distance from the closest school (re-

spectively primary and secondary); the outcome in the models in the last two columns is the (log)

number of schools in the district (respectively primary and secondary). All the models control for

(log) population in the district, and for urbanization.

Districts with better soil quality seem to experience worse educational outcomes. Secondary

enrollment is significantly lower in districts with better soil, which also have significantly fewer

schools. In these models, no clear evidence emerges for primary schools, with the exception that

the (geometric) center of the district is significantly farther from primary schools (implying that

reaching a school might be in general more difficult in districts with better soil). Table 14 reports

the two-stage least squares estimates for the models reported in Table 13: the soil production
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measure is instrumented by the set of dummy variables for dominant soil class discussed above.

The estimates are remarkably close to those of the OLS estimates, and the substantive implications

are unchanged. The only exception is the coefficient on soil quality in the model for the number

of primary schools, which is now statistically significantly negative, implying that districts with

better soil have fewer primary schools.

Table 13: Educational outcomes in Kenya
DV: Prim enrol Sec enrol Dist prim Dist sec Num prim schools Num sec schools
Intercept -0.484 -5.588⇤⇤ 0.247⇤⇤ 0.373⇤⇤ -2.512⇤⇤ -3.688⇤⇤

( 0.498 ) ( 0.75 ) ( 0.023 ) ( 0.044 ) ( 0.36 ) ( 0.36 )
Soil production index 0.027 -0.231⇤ 0.011⇤⇤ 0.018⇤⇤ -0.062 -0.211⇤⇤

( 0.066 ) ( 0.099 ) ( 0.003 ) ( 0.006 ) ( 0.048 ) ( 0.048 )
Road cost -0.061 -0.179 0.005 0.014 -0.022 -0.081

( 0.083 ) ( 0.126 ) ( 0.004 ) ( 0.007 ) ( 0.06 ) ( 0.06 )
Urbanization 0.005 0.111 -0.005 -0.011 0.057 0.124⇤

( 0.074 ) ( 0.112 ) ( 0.003 ) ( 0.007 ) ( 0.054 ) ( 0.054 )
Population 0.935⇤⇤ 1.172⇤⇤ -0.019⇤⇤ -0.027⇤⇤ 0.613⇤⇤ 0.573⇤⇤

( 0.045 ) ( 0.067 ) ( 0.002 ) ( 0.004 ) ( 0.032 ) ( 0.032 )

Models for educational outcomes in Kenya. Dependent variables are respectively primary enrollment, secondary
enrollment, log distance from a primary school, log distance from a secondary school, log number of primary schools,
and log number of secondary schools. +: statistically significant at the 10% level. ⇤: statistically significant at the 5%
level. ⇤⇤: statistically significant at the 1% level.

Table 14: Instrumental variable models for educational outcomes in Kenya
DV: Prim enrol Sec enrol Dist prim Dist sec num prim schools num sec schools
Intercept -0.641 -5.82⇤⇤ 0.261⇤⇤ 0.405⇤⇤ -2.629⇤⇤ -3.861⇤⇤

( 0.509 ) ( 0.768 ) ( 0.024 ) ( 0.047 ) ( 0.369 ) ( 0.373 )
Soil production index -0.124 -0.454⇤⇤ 0.024⇤⇤ 0.049⇤⇤ -0.175⇤ -0.377⇤⇤

( 0.102 ) ( 0.154 ) ( 0.005 ) ( 0.009 ) ( 0.074 ) ( 0.075 )
Road cost -0.046 -0.157 0.003 0.011 -0.011 -0.065

( 0.085 ) ( 0.127 ) ( 0.004 ) ( 0.008 ) ( 0.061 ) ( 0.062 )
Urbanization -0.017 0.079 -0.003 -0.007 0.041 0.1+

( 0.076 ) ( 0.114 ) ( 0.004 ) ( 0.007 ) ( 0.055 ) ( 0.056 )
Population 0.95⇤⇤ 1.193⇤⇤ -0.02⇤⇤ -0.03⇤⇤ 0.623⇤⇤ 0.589⇤⇤

( 0.046 ) ( 0.069 ) ( 0.002 ) ( 0.004 ) ( 0.033 ) ( 0.033 )

Models for educational outcomes in Kenya. Dependent variables are respectively primary enrollment, secondary
enrollment, log distance from a primary school, log distance from a secondary school, log number of primary schools,
and log number of secondary schools. IV estimates: soil production instrumented by dominant soil class dummies.
+: statistically significant at the 10% level. ⇤: statistically significant at the 5% level. ⇤⇤: statistically significant at the
1% level.

We also repeat the estimation using the saturated approach described above: we discretize

the soil quality and road cost variables, and then we create dummies for each combination of soil

and infrastructure categories. The results for models like those in Table 13 using this approach
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are reported in the plots in Figure 4 and in Table 15. These report the estimates from the random

effects models (see Section 3.3 above for an explanation). The message that emerges from these is

(unsurprisingly) consistent with that from the models in which soil production enters linearly: ed-

ucation outcomes are worse in districts with better soil. In addition, it seems that the effect is more

pronounced in particular in districts with relatively bad quality transportation infrastructure.
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Figure 4: Saturated models for the measures of school enrollment and school provision. Darker
lines represent districts with worse transportation infrastructure.

We also have data that capture the quality of the educational provision in a given district. In
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Table 15: Non-parametric interactive models for educational outcomes in Kenya
road cost soil fe se fe se fe se fe se fe se fe se

1.00 1.00 -0.30 0.58 -4.43 0.90 0.19 0.03 0.27 0.05 -2.21 0.42 -3.01 0.42
1.00 2.00 -0.13 0.58 -4.25 0.89 0.18 0.03 0.27 0.05 -2.06 0.42 -2.79 0.42
1.00 3.00 -0.07 0.55 -4.38 0.84 0.19 0.02 0.28 0.05 -1.92 0.40 -2.84 0.40
1.00 4.00 -0.35 1.11 -4.04 1.72 0.18 0.05 0.25 0.10 -2.12 0.80 -2.82 0.81
1.00 5.00 0.20 0.65 -4.60 1.01 0.20 0.03 0.29 0.06 -1.87 0.47 -3.06 0.47
2.00 1.00 -0.63 0.58 -4.87 0.89 0.19 0.03 0.27 0.05 -2.13 0.42 -3.03 0.42
2.00 2.00 -0.09 0.58 -4.64 0.90 0.19 0.03 0.31 0.05 -2.03 0.42 -3.27 0.42
2.00 3.00 -0.17 0.55 -4.72 0.85 0.19 0.02 0.31 0.05 -2.08 0.40 -3.32 0.40
2.00 4.00 -0.60 0.57 -6.09 0.88 0.24 0.03 0.38 0.05 -2.76 0.41 -3.80 0.41
2.00 5.00 -0.46 0.51 -5.62 0.79 0.25 0.02 0.38 0.05 -2.49 0.37 -3.84 0.37
3.00 1.00 -0.83 0.50 -5.23 0.78 0.21 0.02 0.33 0.04 -2.46 0.36 -3.26 0.37
3.00 2.00 0.55 0.52 -4.07 0.81 0.22 0.02 0.32 0.05 -1.67 0.38 -2.78 0.38
3.00 3.00 0.03 0.54 -4.63 0.84 0.18 0.02 0.27 0.05 -1.95 0.39 -3.03 0.39
3.00 4.00 0.03 0.79 -4.40 1.22 0.19 0.04 0.32 0.07 -1.71 0.57 -2.78 0.57
3.00 5.00 -0.68 0.58 -4.89 0.90 0.20 0.03 0.31 0.05 -2.13 0.42 -3.12 0.42

Estimates from the saturated models, with district-level enrollment and school provision as dependent vari-
ables. In the columns labeled “fe” the estimates come from the fixed-effects estimates. The columns labeled “se”
report the standard errors from the fixed-effects estimation.

particular, we estimate regression models with response variable respectively the pupil-teacher

ratio (at the primary and secondary level), the pupil-classroom ratio, and the (log) number of

teachers in the district. All the models control for (log) population in the district. In the case of the

model for number of teachers, this accounts for the fact that larger districts need more teachers.

In the other cases, it accounts for possible scale economies effects. The results of the estimates are

reported in Table 16.

Higher soil quality is statistically significantly associated with a higher pupil-teacher ratio

(PTR) and with a lower number of secondary school teachers. No clear evidence emerges for

the pupil teacher ratio at the secondary level or the pupil-classroom ratio at the primary level.

Table 17 reports the two-stage least squares estimates of these models. The only noticeable differ-

ence is that the coefficient on soil production in the model for primary PTR, while unchanged in

magnitude, is estimated somewhat less precisely and it is statistically significant only at the 10%

level.

It is important to note that in the models for enrollment presented in Table 13, soil quality

is not statistically significantly associated with primary school enrollment. In practice, good soil

districts do not experience significantly lower enrollment in primary schools than districts with

worse soil. Yet, the model for PTR shows that primary schools in better-soil districts tend to be

understaffed. On the other hand, the models in Table 13 show that secondary enrollment is lower
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in good soil districts.

Taken together, these models point to poorer education outcomes in districts with higher-

quality soil. In good-soil districts, as many children enroll in primary schools as those in otherwise

similar districts with worse soil quality, but schools tend to be significantly understaffed. At the

secondary school level, on the other hand, fewer children in the relevant demographic enroll in

school: this leads to a constant pupil-teacher ratio in spite of the significantly lower number of

teachers detected in the model in the fourth column of Table 16.

Table 16: Provision of education in Kenya
DV: PTR (prim) PTR (sec) PCR (prim) Tot teachers (sec)
Intercept 39.44⇤⇤ 12.91⇤⇤ 23.09⇤⇤ -4.75⇤⇤

( 6.27 ) ( 2.94 ) ( 5.38 ) ( 0.52 )
Soil production index 2.2⇤⇤ -0.08 0.66 -0.25⇤⇤

( 0.73 ) ( 0.29 ) ( 0.62 ) ( 0.07 )
Road cost 0.2 0.09 -0.83 -0.15+

( 0.87 ) ( 0.33 ) ( 0.74 ) ( 0.09 )
Urbanization -2.61⇤⇤ -0.37 -1.95⇤⇤ 0.15+

( 0.77 ) ( 0.29 ) ( 0.66 ) ( 0.08 )
Population -0.23 0.24 0.97⇤ 0.86⇤⇤

( 0.56 ) ( 0.26 ) ( 0.48 ) ( 0.05 )

Models for educational outcomes in Kenya. Dependent variables are respectively pri-
mary pupil/teacher ratio, secondary pupil/teacher ratio, primary pupil/classroom ra-
tio, and log number of teachers. +: statistically significant at the 10% level. ⇤: statisti-
cally significant at the 5% level. ⇤⇤: statistically significant at the 1% level.

Table 17: IV models for provision of education in Kenya
DV: PTR (prim) PTR (sec) PCR (prim) Tot teachers (sec)
Intercept 39.5⇤⇤ 13.67⇤⇤ 23.93⇤⇤ -4.96⇤⇤

( 6.29 ) ( 3 ) ( 5.48 ) ( 0.54 )
Soil production index 2.06+ -0.69 -1.11 -0.46⇤⇤

( 1.13 ) ( 0.46 ) ( 0.98 ) ( 0.11 )
Road cost 0.22 0.14 -0.7 -0.13

( 0.87 ) ( 0.33 ) ( 0.76 ) ( 0.09 )
Urbanization -2.62⇤⇤ -0.43 -2.14⇤⇤ 0.12

( 0.78 ) ( 0.3 ) ( 0.68 ) ( 0.08 )
Population -0.23 0.17 0.9+ 0.88⇤⇤

( 0.56 ) ( 0.26 ) ( 0.49 ) ( 0.05 )

Models for educational outcomes in Kenya. Dependent variables are respectively pri-
mary pupil/teacher ratio, secondary pupil/teacher ratio, primary pupil/classroom ra-
tio, and log number of teachers. IV estimates: soil production instrumented by dom-
inant soil class dummies. +: statistically significant at the 10% level. ⇤: statistically
significant at the 5% level. ⇤⇤: statistically significant at the 1% level.

Figure 5 and Table 18 report the results of the saturated interactive models for the variables
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that measure quality of education. Darker lines represent districts with higher road cost (hence

worse roads) and higher values of soil quality represent better soil. The message that emerges

is the same, unsurprisingly: better soil districts have higher pupil-teacher ratios than worse soil

districts, and this effect is more pronounced in districts with worse roads; similarly, the num-

ber of secondary school teachers is at its lowest in districts with good soil and with roads in the

intermediate category.
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Figure 5: Saturated models for the measures of education quality. Darker lines represent districts
with worse transportation infrastructure.

The response variable in the models reported in Table 19 is school attendance respectively in
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Table 18: Non-parametric interactive models for educational provi-
sion in Kenya

road cost soil fe se fe se fe se fe se
1.00 1.00 33.57 7.33 11.37 3.31 22.29 6.33 -3.74 0.62
1.00 2.00 32.29 7.30 11.12 3.31 21.92 6.31 -3.56 0.61
1.00 3.00 31.96 7.02 10.53 3.21 21.58 6.06 -3.65 0.58
1.00 4.00 19.09 12.33 10.72 4.98 10.37 10.65 -3.57 1.18
1.00 5.00 36.18 7.99 13.60 3.53 27.96 6.91 -3.99 0.70
2.00 1.00 28.73 7.49 13.13 3.48 18.92 6.47 -4.00 0.61
2.00 2.00 38.39 7.29 13.01 3.27 26.02 6.29 -4.04 0.62
2.00 3.00 34.59 6.96 10.85 3.14 20.17 6.01 -4.12 0.59
2.00 4.00 42.75 6.92 14.65 3.39 28.51 5.98 -5.04 0.61
2.00 5.00 42.26 6.50 12.34 2.97 23.02 5.61 -4.87 0.55
3.00 1.00 33.72 6.74 12.49 3.11 20.69 5.82 -4.33 0.54
3.00 2.00 32.27 6.52 11.88 3.07 19.95 5.63 -3.46 0.56
3.00 3.00 34.21 6.89 10.40 3.18 24.21 5.95 -3.91 0.58
3.00 4.00 29.04 9.25 10.30 3.95 16.38 7.99 -3.67 0.84
3.00 5.00 34.64 7.40 11.04 3.30 18.20 6.39 -4.13 0.62

Estimates from the saturated models, with district-level pupil/teacher ratio as de-
pendent variables. In the columns labeled “fe” the estimates come from the fixed-
effects estimates. The columns labeled “se” report the standard errors from the
fixed-effects estimation.

primary, secondary, and tertiary education, as a percentage of the relevant school-age population,

and (log) count of school-age children who do not attend school either because parents did not

allow them or they had to work for money or help at home. The coefficient on soil quality is nega-

tive (implying lower school attendance) in the three models for attendance. It is clearly statistically

significant only for primary school attendance, and marginally significant for tertiary attendance.

No clear evidence emerges for the number of children classified as “not allowed” to attend school.

The results are not very different in the two-stage least squares estimation, reported in Table 19. In

particular, the coefficient on soil quality is still statistically significantly negative only in the model

for primary attendance.

The plots in Figure 6 and the estimates in Table 21 come from the saturated models with the

dummies for combinations of discretized soil quality and road cost and the specifications of Table

19. These broadly confirm the results of the regression models. Interestingly, when looking at

disaggregated combinations of soil and roads, it seems that the number of children who are not

allowed to attend school is quite higher in good-soil districts with bad roads. The pattern is the

opposite in the case of good-soil districts with good roads.
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Table 19: School attendance in Kenya
DV: Attendance Primary Secondary Tertiary Not allowed
Intercept 111.13⇤⇤ 44.06⇤⇤ 5.64⇤⇤ 5.9

( 2.65 ) ( 2.43 ) ( 0.78 ) ( 10.62 )
Road cost -1.27 0.69 -0.33 -0.68

( 2.2 ) ( 2.01 ) ( 0.65 ) ( 0.63 )
Soil production index -4.31⇤ -2.17 -0.94+ 0.21

( 1.85 ) ( 1.69 ) ( 0.54 ) ( 0.53 )
Urbanization 0.48 1.67⇤⇤ 0.25⇤ -0.02

( 0.37 ) ( 0.33 ) ( 0.11 ) ( 0.11 )
Number school age children -0.13

( 0.9 )

Models for school attendance. +: statistically significant at the 10% level. ⇤: statisti-
cally significant at the 5% level. ⇤⇤: statistically significant at the 1% level.

Table 20: IV models for school attendance in Kenya
Attendance Primary Secondary Tertiary Not allowed
Intercept 111.82⇤⇤ 44.05⇤⇤ 5.54⇤⇤ 6.67

( 2.82 ) ( 2.44 ) ( 0.79 ) ( 10.96 )
Road cost -0.67 0.68 -0.41 -0.71

( 2.34 ) ( 2.02 ) ( 0.66 ) ( 0.64 )
Soil production index -9.57⇤⇤ -2.09 -0.21 0.37

( 2.87 ) ( 2.48 ) ( 0.81 ) ( 0.77 )
Urbanization 0.35 1.67⇤⇤ 0.27⇤ -0.02

( 0.39 ) ( 0.34 ) ( 0.11 ) ( 0.11 )
Number school age children -0.2

( 0.94 )

Models for school attendance. IV estimates. +: statistically significant at the 10%
level. ⇤: statistically significant at the 5% level. ⇤⇤: statistically significant at the 1%
level.

Table 21: Non-parametric interactive models for school attendance in
Kenya

road cost soil fe se fe se fe se fe se
1.00 1.00 117.46 6.28 39.09 6.95 9.84 2.33 9.83 11.68
1.00 2.00 121.27 5.20 47.22 5.75 5.53 1.93 6.50 11.84
1.00 3.00 117.52 4.79 47.23 5.30 6.30 1.78 5.84 11.51
1.00 5.00 116.62 12.40 37.11 13.73 3.52 4.61 2.26 12.82
2.00 1.00 119.71 7.17 50.93 7.94 8.32 2.66 7.22 11.56
2.00 2.00 120.28 6.25 51.84 6.92 6.21 2.32 3.54 11.86
2.00 3.00 114.58 4.14 50.03 4.58 7.04 1.54 5.60 11.56
2.00 4.00 125.09 12.40 58.55 13.73 5.21 4.61 2.32 13.08
2.00 5.00 95.60 5.05 38.23 5.59 4.03 1.88 8.19 11.91
3.00 1.00 111.89 4.87 45.91 5.39 4.44 1.81 5.92 11.11
3.00 2.00 116.14 7.14 40.34 7.90 4.94 2.65 4.65 11.48
3.00 3.00 119.26 6.34 41.77 7.02 3.58 2.35 3.51 11.32
3.00 4.00 63.46 8.73 21.46 9.67 1.91 3.24 8.78 12.66
3.00 5.00 104.40 4.72 42.56 5.23 4.80 1.75 8.08 11.80

Estimates from the saturated models, with district-level school attendance as dependent
variable. In the columns labeled “fe” the estimates come from the fixed-effects estimates.
The columns labeled “se” report the standard errors from the fixed-effects estimation.
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Figure 6: Saturated models for the measures of education attendance from the smaller dataset.
Darker lines represent districts with worse transportation infrastructure.
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6.3 SUMMARY OF THE RESULTS

We explore the mechanism for the counter-intuitive relationship between soil quality and poverty.

In order to do so, we exploit the detailed data on education that, unfortunately, is only available

for Kenya. We find that districts with good soil tend to experience worse educational outcomes,

both in terms of school attendance and in terms of education supply. Fewer children attend school,

and few schools are available, in these districts that are “blessed” with higher-quality soil. There

is also evidence that the effect is stronger, to an extent, in more isolated districts: in other words,

in districts with lower quality transportation infrastructure soil quality is more tightly associated

with worse education. There is some evidence, in particular, that the number of children who are

not allowed to attend school is systematically higher in districts with bad roads and good soil than

both in districts with good soil and good roads, and in districts with bad roads and also worse soil.

In other words, there is lower human capital accumulation in districts with high soil quality but

poor transportation infrastructure.

6.4 POLITICAL ECONOMY OF RURAL INFRASTRUCTURE: AVENUES FOR FURTHER RE-

SEARCH

Thus far we have illustrated the role of education as a potential mechanism to explain poverty

in isolated places with good soil. Given poor infrastructure, households in soil-rich districts may

choose to invest less in human capital than they would otherwise because the returns to this in-

vestment are low, while the opportunity costs foregone from agricultural activities are high. This

vicious cycle may further aggravate the high level of poverty in high soil quality areas. By contrast,

households in soil-poor districts who also have poor infrastructure face lower opportunity costs

from investing in alternative income generating activities such as education. These households

may therefore be more likely to enroll their children in school and further contribute to human

capital accumulation.

Yet the question remains as to why, if there are such potentially high returns to investing in in-

frastructure in soil-rich areas, these goods continue to be underprovided. Answering this question

represents a promising avenue for further research and requires us to turn to more proximate po-

litical factors to explain the persistent under-provision of roads to areas that need it the most. Sev-
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eral extant studies have considered such politically-driven factors to explain the (mis)allocation of

infrastructure goods.

A number of articles have explored the role of ethnic favoritism in determining road allocation.

For example, Burgess et al (2014) find that during non-democratic periods in Kenya, districts that

share the ethnicity of the president receive significantly more investment in and construction of

paved roads. Ethnic favoritism is not relegated solely to roads and infrastructure, but to the pro-

vision of other goods and services such as education, health, electricity and water (Kramon and

Posner 2013). In a large-N panel study, Franck and Rainer (2012) find evidence of ethnic favoritism

with respect to primary education and infant mortality in 18 African countries. Together these

studies support the claim that social group membership can explain why some areas consistently

do not receive public infrastructure goods: many groups simply do not have a representative in

power to redirect targeted goods toward them.

Blimpo, Harding and Wantchekon (2013) further highlight the importance of political repre-

sentation by examining the relationship between political marginalization, road infrastructure,

and food security. They argue that marginalization is negatively correlated with investment in

roads, thereby decreasing access to food supplies and contributing to food insecurity in the po-

litically marginalized districts of four African countries. Politicians do not need to be responsive

to the needs of these marginalized constituencies because they have no weight in determining

political outcomes. Instead, politicians wish to direct infrastructure projects to voters who can im-

prove their electoral chances. We have previously shown in this paper that soil-rich districts tend

to be more isolated , which could contribute to their marginalization. If this is the case, voters in

soil-rich but isolated areas may continually have their demands for quality roads unmet. Even

if politicians do respond to demands for infrastructure, they may simply turn these projects into

an opportunity for local rent-seeking and elite capture that keeps them in office (Khemani 2010).

Thus marginalized voters may find it difficult to hold their political representatives accountable

or punish them for their lack of provision.

Another potential reason for this lack of accountability is that politicians can change voter in-

centive structures by offering substitutable private goods in lieu of investments in infrastructure.

For example, seeking to explain the lack of infrastructure in India despite high voter demand

among the poor, Khemani (2010) argues that politicians replace large public investment projects
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with targeted social welfare transfers in the face of rising electoral competition in weakly gov-

erned states. That is, politicians eschew the provision of transport infrastructure in favor of less

expensive alternatives that are electorally popular. These alternatives could entail the distribu-

tion of targeted private benefits or clientelistic goods funded by rents appropriated from public

projects. Boone (2009) posits that politicians also rely on land property rights as a source of patron-

age in rural constituencies. This tactic may be especially useful in soil-rich areas where land may

be more valuable to poor individuals who rely on the land for subsistence, and also much cheaper

for politicians to provide. In the long run, the use of these alternative strategies can explain both

the continual under-provision of roads and the survival of politicians unresponsive to constituent

needs.

7 CONCLUSION

In this paper, we detect a surprising empirical regularity, the positive correlation between soil

quality and poverty in Africa, and then provide rigorous evidence about how this pattern emerges

by linking it to resource under-utilization due to lack of infrastructure and limited access to mar-

kets.

In light of these results, the current emphasis on fertilizer use among a number of policy-

makers and agricultural economists could be misguided; more attention should be paid to rural

infrastructure and human capital investment. Roads facilitate access to markets, and the presence

of schools locally provides incentives for investment in human capital. The low rate of adop-

tion of new technologies and the reluctance to use fertilizer in many rural communities might be

driven, paradoxically, by the combination of poor rural infrastructure and the availability of rel-

atively high-quality land. Therefore the growing interest among development agencies on rural

infrastructure and local public goods in general is a promising avenue for rural development and

poverty alleviation in Africa.
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A FURTHER EVIDENCE FROM THE IV

A.1 CHECKING THE ROBUSTNESS OF THE IV ESTIMATES

We further probe the robustness of the results we report. In Table 22 and 23 we report the estimates

of additional IV models (again estimated via 2SLS), with (log) distance from a colonial primary

road and the dummy for presence of a primary road in the district as excluded instruments.

The model in the first column of Table 22 includes controls for a large set of district-level ob-

servable characteristics. In addition to the polynomials for elevation and terrain slope, we include

distance from the coast, the dummy for districts with a river, (log) rural population density, dis-

tance from towns, distance from the capital, average and maximum level of urbanization in the

district, (standardized) length of the growing period, number of towns over 10,000 inhabitants

(normalized by area of the district), (standardized) presence of livestock, and (standardized) rain-

fall. In this model, too, soil quality has a positive association with rural poverty, and the interaction

between lack of infrastructure and soil quality is positive. The main effect of infrastructure (the

effect of poor infrastructure for a district with average soil quality) is negative (which is hard to

rationalize, but one has to keep in mind we are using many other measures of “remoteness” and

in particular, the presence of towns, that, on their own, have a negative association with poverty

–more towns in the district, less poverty).

The model in the second column of Table 22 uses an alternative measure of contemporary

infrastructure provision, the (log) distance of the center of the district from the closest road (based

on the roads featured in the VMAP0 Major Road Library published by FAO). Again, soil quality

and the interaction between soil quality and lack of infrastructure (measured by the distance of the

district from a “major road”) are positively related to rural poverty. In this model, too, remoteness

in a district with average soil quality is negatively associated with rural poverty. It is unclear to
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us what drives this result. In this model, we do not include any controls other than the country

fixed effects. The third model uses yet a third measure of contemporary infrastructure: the (log)

distance of the center of the district from roads of category 1 and 2 in the RWDB roads shapefile.

The results here are that (as usual) the infrastructure-soil quality interaction is positive (statistically

significant with regular standard errors only) but the main effects are not statistically significant

(and negative in both cases). This model does not include any controls other than the country

fixed effects. The fourth model uses the poverty measure based on percentage of population

under two dollars a day as dependent variable. The main effects of soil quality and road cost

are not statistically significant, but again the coefficient on the interaction term is positive (and

statistically significant with the default 2SLS standard errors).

Sensitivity checks for the exclusion restriction We perform some sensitivity analysis to assess

to what extent the results of the IV estimation depend on the exclusion restriction holding ex-

actly rather than approximately. For this purpose, we follow the approach of Conley et al. (2012),

which makes it possible to identify IV coefficients using a relaxed version of the exclusion restric-

tion. This restriction amounts to the assumption that the direct effect of the instrument on the

outcome is exactly zero. Conley et al. (2012) suggest to replace the assumption of zero effect with

a distribution of plausible effects. One can estimate the model under different distributions, to

assess how serious the violation of the exclusion restriction needs to be for the results of the 2SLS

estimation to be misleading.

We use the “local-to-zero” method of Conley et al., specifying a full distribution for the direct

effects of the instrument on the outcome. The distribution captures the prior knowledge regarding

the direct effect of the instruments on the outcome; in other words, it reflects the fact that there is

uncertainty regarding whether the exclusion restriction holds.

As a result of the sensitivity analysis, one obtains, for every distribution of the direct effect

of the instruments on the outcome, a distribution of the IV effect. This distribution reflects the

uncertainty regarding the effect of the instrumented endogenous variable on the outcome vari-

able deriving both by sampling variation and by the uncertainty regarding the strength of the

departure from the exclusion restriction.

In our analysis, the most important instance in which the exclusion restriction might be vio-
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lated is that of the model that uses mining activity in the district as an instrument for the presence

of infrastructure.

We perform the Conley et al. (2012) analysis for this model under different scenarios. The

first one assumes that the direct effect of being a mining district on poverty has mean -5 (meaning

that being a mining district reduces poverty by 5 percentage points, all else equal) with a standard

deviation 2.5 (so that with some –small– probability the effect is zero or positive). We also allow for

the interaction between mining and soil productivity to be negative, and for the other variables

to have smaller direct effects (respectively 1 and -1 for the terms involving log distance from a

colonial road and for the dummy for presence of a colonial road in the district).

If this were the case, the inference about a positive effect of transportation costs and of the

interaction between soil quality and transportation costs would still be valid. If anything, the

2SLS estimate we get (and for which the exclusion restriction is assumed to hold exactly) would

be an underestimation of the effect of these variables, if mining had such a strong negative effect

on rural poverty.

The second scenario assigns to all of the direct effects of instruments on outcome a normal

distribution with mean 0 and standard deviation .5 for the main effects, .25 for the interactions

between soil productivity and the excluded instruments. This allows for mining and for colonial

infrastructure to have, potentially, a positive or a negative direct effect on rural poverty. In this

case, we are probing sensitivity to small departures – in either direction – from the exclusion

restriction.

In this scenario, the inference regarding the positive interactive effect between road cost and

soil quality would still be valid, with a 95 percent interval for this effect between 0.91 and 16.15,

while the interval for the main effect of transportation infrastructure would span zero.

The third scenario assigns to the direct effects a uniform distribution (on the (-.25, .25) support).

Also in this case, the inference for the interaction effect would be the same, and the 95 percent

interval for the effect would be [2.07, 15.5]. The inference of a positive main effect of road cost

would not be justified, as again the 95 percent interval spans zero.

What these sensitivity checks tell us is that even if the exclusion restriction (and in particu-

lar that for the direct effect of the presence of mines and quarries in the district) did not hold

exactly, but were subject to (relatively small) violations, the IV inference regarding the interac-
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tion between soil quality and road costs would still be valid. In addition, if mining activities had

a direct poverty-reducing effect, then our IV estimates of the effect of infrastructure would be

under-estimates of the true effect.
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Table 22: Further robustness checks
robustness1 (1) (2) (3) (4) (5)

Intercept 55.85⇤⇤ 76.17⇤⇤ 94.62⇤⇤ 58.12⇤⇤ 77.78⇤⇤

( 3.4 ) ( 1.71 ) ( 11.75 ) ( 0.87 ) ( 1.7 )
Soil quality index 2.48⇤⇤ 6.59⇤⇤ -2.76+

( 0.4 ) ( 0.41 ) ( 1.41 )
Road cost -8.58⇤ 0.49 7.29⇤⇤

( 3.53 ) ( 1.43 ) ( 1.96 )
Distance coast 0.95⇤⇤

( 0.14 )
River district 1.29⇤

( 0.51 )
Elevation 1.52⇤⇤

( 0.2 )
Elevation2 -0.07⇤⇤

( 0.01 )
Rural pop. density 11.12⇤⇤

( 0.4 )
Median slope 4.97⇤

( 2.48 )
Median slope2 -1.54⇤⇤

( 0.54 )
Distance town -0.77⇤⇤

( 0.12 )
Distance.capital 0.06

( 0.08 )
Urbanization -3.94⇤⇤

( 0.23 )
Max urbanization -0.4⇤⇤

( 0.05 )
Length growing period -1.45

( 1.23 )
towns_10K_area -0.12⇤⇤

( 0.03 )
Livestock 0.76

( 0.68 )
Rainfall 2.37⇤

( 1.05 )
Soil quality index by Road cost 4.07⇤⇤

( 1.34 )
Distance road -5.92⇤⇤

( 1.19 )
Soil quality index by Distance Road 4.03⇤⇤

( 0.71 )
Roads -5.31

( 4.15 )
Soil quality index by Roads 3.31⇤⇤

( 0.61 )
Soil production index 0.29 1.13

( 0.41 ) ( 2.14 )
Soil production index by Road cost 12.96⇤⇤ 22.61⇤⇤

( 2.14 ) ( 6.36 )
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Table 23: Further robustness checks
robustness1 (1) (2) (3) (4) (5)

Intercept 55.85⇤⇤ 76.17⇤⇤ 94.62⇤⇤ 58.12⇤⇤ 77.78⇤⇤

( 5.18 ) ( 1.17 ) ( 2.22 ) ( 0.1 ) ( 0.2 )
Soil quality index) 2.48⇤⇤ 6.59⇤⇤ -2.76

( 0.44 ) ( 0.77 ) ( 6.01 )
Road cost -8.58⇤⇤ 0.49 7.29⇤

( 1.92 ) ( 1.22 ) ( 3.64 )
Distance coast 0.95⇤⇤

( 0.12 )
River district 1.29

( 0.78 )
Elevation 1.52⇤⇤

( 0.32 )
Elevation2 -0.07⇤⇤

( 0.02 )
Rural pop. density 11.12⇤⇤

( 0.93 )
Median slope 4.97

( 3.24 )
Median slope2 -1.54⇤

( 0.68 )
Distance town -0.77⇤⇤

( 0.21 )
Distance capital 0.06

( 0.09 )
Urbanization -3.94⇤⇤

( 0.5 )
Max urbanization -0.4⇤⇤

( 0.09 )
Length growing period -1.45

( 2.4 )
Towns over 10K inhabitants -0.12⇤

( 0.06 )
Livestock 0.76

( 0.59 )
Rainfall 2.37

( 2.09 )
Soil quality index by Road cost 4.07⇤⇤

( 1.27 )
Distance road -5.92⇤⇤

( 1.45 )
Soil quality index by Distance road 4.03⇤⇤

( 1.28 )
Roads -5.31⇤⇤

( 0.79 )
Soil quality index by Roads 3.31

( 2.14 )
Soil production index 0.29 1.13

( 1.06 ) ( 2.68 )
Soil production index by Road cost 12.96 22.61

( 9.47 ) ( 17.45 )
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